Sichuan Basin is encircled by high mountains and plateaus with the heights ranging from 1 km to 3 km, and is one of the most polluted regions in China. However, the dominant chemical species and light absorption properties of aerosol particles is still not clear in rural areas. Chemical composition in PM1 (airborne particulate matter with an aerodynamic diameter less than 1 mu m) and light-absorbing properties were determined in Chengdu (urban) and Sanbacun (rural) in western Sichuan Basin (WSB), Southwest China. Carbonaceous aerosols and secondary inorganic ions (NH4+, NO3- and SO42-) dominate PM1 pollution, contributing more than 85% to PM1 mass at WSB. The mean concentrations of organic and elemental carbon (OC, EC), K+ and Cl- are 19.69 mu g m(-3), 8.00 mu g m(-3), 1.32 mu g m(-3),1.16 mu g m(-3) at the rural site, which are 26.2%, 65.3%, 34.7% and 48.7% higher than those at the urban site, respectively. BrC (brown carbon) light absorption coefficient at 405 nm is 63.90 +/- 27.81 M m(-1) at the rural site, contributing more than half of total absorption, which is about five times higher than that at urban site (10.43 +/- 4.74 M m(-1)). Compared with secondary OC, rural BrC light absorption more depends on primary OC from biomass and coal burning. The rural MAE(Brc) (BrC mass absorption efficiency) at 405 nm ranges from 0.6 to 5.1 m(2) g(-1) with mean value of 3.5 +/- 0.8 m(2) g(-1), which is about three times higher than the urban site. (C) 2021 Elsevier Ltd. All rights reserved.
To understand the characteristics of particulate matter (PM) and other air pollutants in Xinjiang, a region with one of the largest sand-shifting deserts in the world and significant natural dust emissions, the concentrations of six air pollutants monitored in 16 cities were analyzed for the period January 2013-June 2019. The annual mean PM2.5, PM10, SO2, NO2, CO, and O-3 concentrations ranged from 51.44 to 59.54 mu g m(-3), 128.43-155.28 mu g m(-3), 10.99-17.99 mu g m(-3), 26.27-31.71 mu g m(-3), 1.04-1.32 mg m(-3), and 55.27-65.26 mu g m(-3), respectively. The highest PM concentrations were recorded in cities surrounding the Taklimakan Desert during the spring season and caused by higher amounts of wind-blown dust from the desert. Coarse PM (PM10-2.5) was predominant, particularly during the spring and summer seasons. The highest PM2.5/PM10 ratio was recorded in most cities during the winter months, indicating the influence of anthropogenic emissions in winters. The annual mean PM2.5 (PM10) concentrations in the study area exceeded the annual mean guidelines recommended by the World Health Organization (WHO) by a factor of ca. similar to 5-6 (similar to 7-8). Very high ambient PM concentrations were recorded during March 19-22, 2019, that gradually influenced the air quality across four different cities, with daily mean PM2.5 (PM10) concentrations similar to 8-54 (similar to 26-115) times higher than the WHO guidelines for daily mean concentrations, and the daily mean coarse PM concentration reaching 4.4 mg m(-3). Such high PM2.5 and concentrations pose a significant risk to public health. These findings call for the formulation of various policies and action plans, including controlling the land degradation and desertification and reducing the concentrations of PM and other air pollutants in the region. (C) 2020 Elsevier Ltd. All rights reserved.
In this study, we evaluated the variations of air quality in Lanzhou, a typical city in Northwestern China impacted by the COVID-19 lockdown. The mass concentration and chemical composition of non-refractory submicron particulate matter (NR-PM1) were determined by a high-resolution aerosol mass spectrometer during January-March 2020. The concentration of NR-PM(1)dropped by 50% from before to during control period. The five aerosol components (sulfate, nitrate, ammonium, chloride, and organic aerosol [OA]) all decreased during the control period with the biggest decrease observed for secondary inorganic species (70% of the total reduction). Though the mass concentration of OA decreased during the control period, its source emissions varied differently. OA from coal and biomass burning remained stable from before to during control period, while traffic and cooking related emissions were reduced by 25% and 50%, respectively. The low concentration during the control period was attributed to the lower production rate for secondary aerosols.
In recent years, a great number of studies has been carried out in urban cities regarding urban particulate matter (PM) pollution in China, especially in eastern China. Lhasa, the capital of the Tibet Autonomous Region in western China, is the highest (3650 m a.s.l.) city in China and has notably different lifestyles and PM sources comparing with those in eastern China. However, there is currently a lack of studies on PM pollution in this city. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer was deployed along with other co-located instruments to explore the chemical characterization of ambient submicron PM (PM1) in Lhasa from 31 August 2019 to 26 September 2019. The mean ambient PM1 mass loading through this study was 4.72 mu g m(-3). Organic aerosols (OAs) played a dominant role with an average contribution of 82.6% to PM1, followed by 5.4% nitrate, 4.7% ammonium, 3.4% sulfate, 3.1% BC, and 0.7% chloride. The relatively lower contribution from secondary inorganic aerosols (nitrate and sulfate) in this study was distinctly different from that in eastern China, indicating lower fossil fuel usage in this city. Via positive matrix factorization (PMF), organic aerosols were decomposed into four components containing a traffic-related hydrocarbon-like OA (HOA), a cooking-related OA (COA), a biomass burning-related OA (BBOA), as well as an oxygenated OA (OOA). The OOA and COA had higher contributions (34% and 35%, respectively) to total OAs, while the rest accounted for 17% for HOA and 14% for BBOA. However, an increased mass fraction of BBOA (up to 36%) was found during the Sho Dun Festival, suggesting the importance of biomass burning emissions during the religious activities in this city. Frequent new particle formation events were observed during this study and the contribution of chemical species for the particle growth was also explored.
Tibetans in the Qinghai-Tibet Plateau (QTP) commonly burn highland barley during their traditional festivals. However, few studies have been focused on the physical and chemical properties of the particles emitted when such biomass is burned. A comprehensive field study was conducted on the top of Waliguan mountain (3816 m a. s.l.) at the northeastern border of the QTP to provide insights into aerosol characteristics in this remote site during July 2017 during which one of the most important Tibetan festivals (known as Weisang) occurred on 5-6 July. Extremely intense aerosol emissions occurred between 23:00 on 5 July and 08:00 on 6 July, and the dominant chemicals emitted in submicron particular matter (PM1) were organic aerosols (OAs) measured through a high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS). Fresh biomass burning OA (BBOA) and traffic-related hydrocarbon-like OA (HOA), decomposed by positive matrix factorization analysis on the OA high-resolution mass spectrum, contributed similar to 90% of the OA during the event. The BBOA mass spectrum was found to be very similar to that of traditional wood identified by HR-ToF-AMS, but with fewer nitrogen-containing species and a higher m/z 60 to 73 signal ratio. The BBOA emission factor during the event was 2.28 g kg(-1), which was comparable to emission factors found for burning wheat, grass, dung, and hardwood in previous studies in Himalayas. The particle light extinction coefficient and the cloud condensation nuclei number concentration were clearly increased during the period of burning highland barley, suggesting that the aerosols emitted could significantly affect radiative forcing and cloud properties in the QTP.