Canopy reflectance (CR) models describe the transfer and interaction of radiation from the soil background to the canopy layer and play a vital role in the retrieval of biophysical variables. However, few efforts have focused on estimating soil background scattering operators, resulting in uncertainties in CR modelling, especially over sloping terrain. This study developed a canopy reflectance model for simulating CR over sloping terrain, which combines the general spectral vector (GSV) model, the PROSPECT model, and 4SAIL model coupled with topography (GSV-PROSAILT). The canopy reflectance simulated by GSV-PROSAILT was validated against two datasets: discrete anisotropic radiative transfer (DART) simulations and remote sensing observations. A comparison with DART simulations under various conditions revealed that the GSV-PROSAILT model captures terrain-induced CR distortion with high accuracy (red band: coefficient of determination $\lpar {\rm R 2} \rpar = 0.731$(R2)=0.731, root-mean-square error (RMSE) = 0.007; near infrared (NIR) band: $\rm R2 = 0.8319$R2=0.8319, RMSE = 0.0098). The results of remote sensing observation verification revealed that the GSV-PROSAILT model can be successfully used in CR modelling. These validations confirmed the performance of GSV-PROSAILT in soil and canopy reflectance modelling over sloping terrain, indicating that it can provide a potential tool for biophysical variable retrieval over mountainous areas.
This study integrates a dynamic plant growth model with a three-dimensional (3D) radiative transfer model (RTM) for maize traits retrieval using high spatial-spectral resolution airborne data. The research combines the Discrete Anisotropic Radiative Transfer (DART) model with the Dynamic L-System-based Architectural maize (DLAmaize) growth model to simulate field reflectance. Comparison with the 1D RTM SAIL revealed limitations in representing row structure effects, field slope, and complex light-canopy interactions. Novel Global Sensitivity Analyses (GSA) were carried out using dependence-based methods to overcome limitations traditional variance-based approaches, enabling better characterization of hyperspectral sensitivity to changes in leaf biochemistry, canopy architecture, and soil moisture. GSA provided complementary results to assess estimation uncertainties of the proposed traits retrieval method across growth stages. A hybrid inversion framework combining DART simulations with an active learning strategy using Kernel Ridge Regression was implemented for traits estimation. The approach was validated using ground data and HyPlant-DUAL airborne hyperspectral images from two field campaigns in 2018 and achieved high retrieval accuracy of key maize traits: leaf area index (LAI, R2=0.91, RMSE=0.42 m2/m2), leaf chlorophyll content (LCC, R2=0.61, RMSE=3.89 mu g/cm2), leaf nitrogen content (LNC, R2=0.86, RMSE=1.13 x 10-2 mg/cm2), leaf dry matter content (LMA, R2=0.84, RMSE=0.15 mg/cm2), and leaf water content (LWC, R2=0.78, RMSE=0.88 mg/cm2). The validated models were used to generate two-date 10 m resolution maps, showing good spatial consistency and traits dynamics. The findings demonstrate that integrating 3D RTMs with dynamic growth models is suited for maize trait mapping from hyperspectral data in varying growing conditions.
The soil ecosystem has been severely damaged because of the increasingly severe environmental problems caused by excessive application of phosphorus (P) fertilizer, which seriously hinders soil fertility restoration and sustainable farmland development. Shoot P uptake (SPU) is an important parameter for monitoring crop growth and health and for improving field nutrition management and fertilization strategies. Achieving on-site measurement of large-scale data is difficult, and effective nondestructive prediction methods are lacking. Improving spatiotemporal SPU estimation at the regional scale still poses challenges. In this study, we proposed a combination prediction model based on some representative samples. Furthermore, using the experimental area of Henan Province, as an example, we explored the potential of the hyperspectral prediction of maize SPU at the canopy scale. The combination model comprises predicted P uptake by maize leaves, stems, and grains. Results show that (1) the prediction accuracy of the combined prediction model has been greatly improved compared with simple empirical prediction models, with accuracy test results of R 2 = 0.87, root mean square error = 2.39 kg/ha, and relative percentage difference = 2.71. (2) In performance tests with different sample sizes, two-dimensional correlation spectroscopy i.e., first-order differentially enhanced two-dimensional correlation spectroscopy (1Der-2DCOS) and two-trace 2DCOS of enhanced filling and milk stages (filling-milk-2T2DCOS)) can effectively and robustly extract spectral trait relationships, with good robustness, and can achieve efficient prediction based on small samples. (3) The hybrid model constrained by the Newton-Raphson-based optimizer's active learning method can effectively filter localized simulation data and achieve localization of simulation data in different regions when solving practical problems, improving the hybrid model's prediction accuracy. The practice has shown that with a small number of representative samples, this method can fully utilize remote sensing technology to predict SPU, providing an evaluation tool for the sustainable use of agricultural P. Therefore, this method has good application prospects and is expected to become an important means of monitoring global soil P surplus, promoting sustainable agricultural development.
This paper describes the selected algorithm for the ESA climate change initiative vegetation parameters project. Multi- and hyper-spectral, multi-angular, or multi-sensor top-of-canopy reflectance data call for an efficient generic retrieval system which can improve the consistent retrieval of standard canopy parameters as albedo, Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and their uncertainties, and exploit the information to retrieve additional parameters (e.g. leaf pigments). We present a retrieval system for canopy and sub-canopy parameters (OptiSAIL), which is based on a model comprising SAIL (canopy reflectance), PROSPECT-D (leaf properties), TARTES (snow properties), a soil model (soil reflectance anisotropy, moisture effect), and a cloud contamination model. The inversion is gradient based and uses codes created by Automatic Differentiation. The full per pixel covariance-matrix of the retrieved parameters is computed. For this demonstration, single observation data from the Sentinel-3 SY_2_SYN (synergy) product is used. The results are compared with the MODIS 4-day LAI/fAPAR product and PhenoCam site photography. OptiSAIL produces generally consistent and credible results, at least matching the quality of the technically quite different MODIS product. The system is computationally efficient with a rate of 150 pixel s(-1) (7 ms per pixel) for a single thread on a current desktop CPU using observations on 26 bands. Not all of the model parameters are well determined in all situations. Significant correlations between the parameters are found, which can change sign and magnitude over time. OptiSAIL appears to meet the design goals and puts real-time processing with this kind of system into reach.
Heavy metal stress can lead to morphological and physiological variations in crops. We aimed to distinguish heavy metal stress levels based on the variations of morphological and physiological parameters from radiative transfer and statistical models. Sentinel-2 satellite images and in situ measured data were collected from heavy metal-contaminated soils of rice growing areas in Zhuzhou City, Hunan Province, China. The chlorophyll content (chlorophyll a + chlorophyll b, Cab) and leaf area index (LAI) were calculated using a PROSAIL radiative transfer model and the multilayer perceptron algorithm. A two-dimensional feature space was established from Cab-LAI. Furthermore, a normalized heavy metal stress index (HMSI) from the established Cab-LAI theoretical triangular model was explored to distinguish heavy metal stress levels in rice. The results indicated that (i) the PROSAIL and artificial neural network algorithm were successful at deriving physiological parameters with high estimation accuracy. Pearson's correlation coefficient between the predicted and measured Cab was 0.85; (ii) the correlation between the measured concentration of cadmium in the soil and the HMSI was 0.84, indicating that it is a good indicator of rice damage caused by heavy metal stress, with the maximum HMSI occurring in rice subjected to high pollution; and (iii) high pollution occurred on both sides of the Xiangjiang River, whereas moderate pollution mainly existed around the heavily polluted areas. Areas with non-pollution and mild pollution were distributed over most of the study area. Combining rice Cab with LAI is a feasible method to determine the distribution of rice heavy metal stress levels over a large area.