为提高隧道施工安全水平,解决当前青藏高原富水冰碛隧道施工中安全隐患大、事故频发的问题,引入韧性理论,提出一种施工安全韧性评价方法。首先对青藏高原富水冰碛隧道施工安全韧性的概念进行分析,结合PSR(PressureState-Response)模型,建立青藏高原富水冰碛隧道施工安全韧性PSR模型,在此基础上,通过系统性文献综述法和专家调查法识别并筛选指标,建立了包含3个一级指标和26个二级指标的青藏高原富水冰碛隧道施工安全韧性评价指标体系;其次,基于博弈论原理,运用区间层次分析法和反熵权法,求得指标最优组合权重,并运用可拓云综合评价模型,将定量与定性分析相结合,对青藏高原富水冰碛隧道施工安全韧性进行评价;最后,对青藏高原地区某富水冰碛隧道的施工安全韧性进行了实例分析,并从压力指标、状态指标、响应指标三方面提出韧性提升建议。研究结果表明:该隧道施工安全韧性等级为3级(中等韧性),其中压力指标的韧性等级为2级(较低韧性),状态指标的韧性等级为4级(较高韧性),响应指标的韧性等级为3级(中等韧性),说明该隧道施工过程中受到压力因素的影响较为严重,但施工系统自身完善有效的措施方案,能在很大程度上...
为提高隧道施工安全水平,解决当前青藏高原富水冰碛隧道施工中安全隐患大、事故频发的问题,引入韧性理论,提出一种施工安全韧性评价方法。首先对青藏高原富水冰碛隧道施工安全韧性的概念进行分析,结合PSR(PressureState-Response)模型,建立青藏高原富水冰碛隧道施工安全韧性PSR模型,在此基础上,通过系统性文献综述法和专家调查法识别并筛选指标,建立了包含3个一级指标和26个二级指标的青藏高原富水冰碛隧道施工安全韧性评价指标体系;其次,基于博弈论原理,运用区间层次分析法和反熵权法,求得指标最优组合权重,并运用可拓云综合评价模型,将定量与定性分析相结合,对青藏高原富水冰碛隧道施工安全韧性进行评价;最后,对青藏高原地区某富水冰碛隧道的施工安全韧性进行了实例分析,并从压力指标、状态指标、响应指标三方面提出韧性提升建议。研究结果表明:该隧道施工安全韧性等级为3级(中等韧性),其中压力指标的韧性等级为2级(较低韧性),状态指标的韧性等级为4级(较高韧性),响应指标的韧性等级为3级(中等韧性),说明该隧道施工过程中受到压力因素的影响较为严重,但施工系统自身完善有效的措施方案,能在很大程度上...
为提高隧道施工安全水平,解决当前青藏高原富水冰碛隧道施工中安全隐患大、事故频发的问题,引入韧性理论,提出一种施工安全韧性评价方法。首先对青藏高原富水冰碛隧道施工安全韧性的概念进行分析,结合PSR(PressureState-Response)模型,建立青藏高原富水冰碛隧道施工安全韧性PSR模型,在此基础上,通过系统性文献综述法和专家调查法识别并筛选指标,建立了包含3个一级指标和26个二级指标的青藏高原富水冰碛隧道施工安全韧性评价指标体系;其次,基于博弈论原理,运用区间层次分析法和反熵权法,求得指标最优组合权重,并运用可拓云综合评价模型,将定量与定性分析相结合,对青藏高原富水冰碛隧道施工安全韧性进行评价;最后,对青藏高原地区某富水冰碛隧道的施工安全韧性进行了实例分析,并从压力指标、状态指标、响应指标三方面提出韧性提升建议。研究结果表明:该隧道施工安全韧性等级为3级(中等韧性),其中压力指标的韧性等级为2级(较低韧性),状态指标的韧性等级为4级(较高韧性),响应指标的韧性等级为3级(中等韧性),说明该隧道施工过程中受到压力因素的影响较为严重,但施工系统自身完善有效的措施方案,能在很大程度上...
In this study, advanced image processing technology is used to analyze the three-dimensional sand composite image, and the topography features of sand particles are successfully extracted and saved as high-quality image files. These image files were then trained using the latent diffusion model (LDM) to generate a large number of sand particles with real morphology, which were then applied to numerical studies. The effects of particle morphology on the macroscopic mechanical behavior and microscopic energy evolution of sand under complex stress paths were studied in detail, combined with the circular and elliptical particles widely used in current tests. The results show that with the increase of the irregularity of the sample shape, the cycle period and radius of the closed circle formed by the partial strain curve gradually decrease, and the center of the circle gradually shifts. In addition, the volume strain and liquefaction strength of sand samples increase with the increase of particle shape irregularity. It is particularly noteworthy that obvious vortex structures exist in the positions near the center where deformation is severe in the samples of circular and elliptical particles. However, such structures are difficult to be directly observed in sample with irregular particles. This phenomenon reveals the influence of particle morphology on the complexity of the mechanical behavior of sand, providing us with new insights into the understanding of the response mechanism of sand soil under complex stress conditions. (c) 2024 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method (DEM) modelling. The bi-directional shear consists of a static shear consolidation and subsequent shear under constant vertical stress and constant volume conditions. A side wall node loading method is used to exert bi-directional shear of various angles. The results show that bi-directional shear can significantly influence the mechanical behaviour of granular materials. However, the relationship between bidirectional shear and mechanical responses relies on loading conditions, i.e. constant vertical stress or constant volume conditions. The stress states induced by static shear consolidation are affected by loading angles, which are enlarged by subsequent shear, consistent with the relationship between bidirectional shear and principal stresses. It provides evidence for the dissipation of stresses accompanying static liquefaction of granular materials. The presence of bi-directional principal stress rotation (PSR) is demonstrated, which evidences why the bi-directional shear of loading angles with components in two directions results in faster dissipations of stresses with static liquefaction. Contant volume shearing leads to cross-anisotropic stress and fabric at micro-contacts, but constant vertical stress shearing leads to complete anisotropic stress and fabric at micro-contacts. It explains the differentiating relationship between stress-strain responses and fabric anisotropy under these two conditions. Micromechanical signatures such as the slip state of micro-contacts and coordination number are also examined, providing further insights into understanding granular behaviour under bi-directional shear. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
During the construction and operation of gas storage reservoirs, changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress, potentially leading to failure in the surrounding rock. However, the weakening of strength due to pure stress rotation has not yet been investigated. Based on fracture mechanics, an enhanced Mohr-Coulomb strength criterion considering stress rotation is proposed and verified with experimental and numerical simulations. The micro-damage state and the evolution of the rock under the pure stress-rotation condition are analyzed. The findings indicate that differential stress exceeding the crack initiation stress is a prerequisite for stress rotation to promote the development of rock damage. As the differential stress increases, stress rotation is more likely to induce rock damage, leading to a transition from brittle to plastic failure, characterized by wider fractures and a more complex fracture network. Overall, a negative exponential relationship exists between the stress rotation angle required for rock failure and the differential stress. The feasibility of applying the enhanced criterion to practical engineering is discussed using monitoring data obtained from a mine-by tunnel. This study introduces new concepts for understanding the damage evolution of the surrounding rock under complex stress paths and offers a new theoretical basis for predicting the damage of gas storage reservoirs. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/ by/4.0/).
将PSR模型引入到生态修复效果评估方法研究中,构建了目标层、准则层、要素层和指标层4个层次,包括人类活动、水文气象、土地覆盖、生态系统健康、水源涵养服务功能、景观格局、社会经济7个方面14个指标的生态修复效果评估指标体系;采用AHP法确定了指标的权重值,并运用加权平均法的思路,构建了生态修复效果综合指数的计算方法。采用该指标体系和评估方法对2000、2005、2010、2015、2020年祁连山冰川与水源涵养功能区生态修复效果综合指数进行了估算。结果表明:近20年生态修复效果综合指数排序为ESI2010
将PSR模型引入到生态修复效果评估方法研究中,构建了目标层、准则层、要素层和指标层4个层次,包括人类活动、水文气象、土地覆盖、生态系统健康、水源涵养服务功能、景观格局、社会经济7个方面14个指标的生态修复效果评估指标体系;采用AHP法确定了指标的权重值,并运用加权平均法的思路,构建了生态修复效果综合指数的计算方法。采用该指标体系和评估方法对2000、2005、2010、2015、2020年祁连山冰川与水源涵养功能区生态修复效果综合指数进行了估算。结果表明:近20年生态修复效果综合指数排序为ESI2010