Snow cover distribution has a profound impact on ground temperature, on thickness of the active layer, and on permafrost. The purpose of this study was to evaluate the effects of snow cover on soil thermal regimes in West Siberia and to characterize the meso- and micro-scale spatial variation of winter ground surface temperature (GST). Maximum snow cover thickness (> 80 cm) and duration (similar to 8 months) were recorded for the lower elevation areas and in the forest site (using a vertical array of Muttons). Shallow snow cover and a late snow formation characterized open raised areas with shallow permafrost. Our results indicate that 20 cm snow cover thickness is the minimum for generating a significant insulating effect. Date of snow cover formation with thickness > 20 cm had the strongest influence on soil temperature regimes. We found a significant negative correlation between winter GST and elevation. This relationship is indirectly controlled by snow cover redistribution. We additionally have shown that elevation, n-factor and winter GST are the variables most significantly affecting thaw depth in permafrost-affected soils. This research dictates the need for taking into account snowfall, and its redistribution due to the variability of local factors, in predicting the effects of climate change on soil temperatures and active layer depth. According to long-term meteorological data for West Siberia, a temporal trend in snowfall is not observed. Nevertheless, considerable interannual fluctuations in snow cover thickness can lead to interannual variations in the soil thermal regimes.
Peatlands in the Hudson Bay Lowlands (HBL) extend from the sporadic to the continuous permafrost zones. They store similar to 30 Pg of soil carbon, similar to 10% of which is sequestered in permafrost. Palsa fields and peat plateaus are dominant features in the HBL of northern Ontario, but pronounced warming trends in the area are associated with accelerated degradation of these features. This research investigated greenhouse gas production potential (CO2 and CH4) from HBL peatlands near Peawanuck, ON, in the context of rapid palsa degradation. Active layer and permafrost samples from palsas, and samples from fens adjacent to the palsas were collected at sites exhibiting different degradation rates and patterns, identified via the sequential analysis of historical aerial photographs and recent satellite imagery. The samples were incubated anaerobically at 4 degrees C and 14 degrees C to assess CO2 and CH4. In general, CO2 production potential was higher than CH4, however the production of CH4 was extremely sensitive to increased temperatures. Between 4 degrees C and 14 degrees C CH4 production increased by factors ranging from 6 to 90, whereas CO2 production consistently increased by a factor of similar to 2. The production of both gases was higher from fen peat then from permafrost and active layer peat at either temperature when incubated in anaerobic conditions for 225 days. This suggests that higher production rates of CO2 and CH4 from thermokarst features compared to intact permafrost landscapes are not only the result of environmental conditions such as wetness and increased temperatures, but also likely a result of organic matter chemistry and bioavailability associated with increased sedge growth following permafrost degradation.
Increased mineralization of the organic matter (OM) stored in permafrost is expected to constitute the largest additional global warming potential from terrestrial ecosystems exposed to a warmer climate. Chemical composition of permafrost OM is thought to be a key factor controlling the sensitivity of decomposition to warming. Our objective was to characterise OM from permafrost soils of the European Arctic: two mineral soils-Adventdalen, Svalbard, Norway and Vorkuta, northwest Russia-and a palsa (ice-cored peat mound patterning in heterogeneous permafrost landscapes) soil in Neiden, northern Norway, in terms of molecular composition and state of decomposition. At all sites, the OM stored in the permafrost was at an advanced stage of decomposition, although somewhat less so in the palsa peat. By comparing permafrost and active layers, we found no consistent effect of depth or permafrost on soil organic matter (SOM) chemistry across sites. The permafrost-affected palsa peat displayed better preservation of plant material in the deeper layer, as indicated by increasing contribution of lignin carbon to total carbon with depth, associated to decreasing acid (Ac) to aldehyde (Al) ratio of the syringyl (S) and vanillyl (V) units, and increasing S/V and contribution of plant-derived sugars. By contrast, in Adventdalen, the Ac/Al ratio of lignin and the Alkyl C to O-alkyl C ratio in the NMR spectra increased with depth, which suggests less oxidized SOM in the active layer compared to the permafrost layer. In Vorkuta, SOM characteristics in the permafrost profile did not change substantially with depth, probably due to mixing of soil layers by cryoturbation. The composition and state of decomposition of SOM appeared to be site-specific, in particular bound to the prevailing organic or mineral nature of soil when attempting to predict the SOM proneness to degradation. The occurrence of processes such as palsa formation in organic soils and cryoturbation should be considered when up-scaling and predicting the responses of OM to climate change in arctic soils.
Palsa peatlands, permafrost-affected peatlands characteristic of the outer margin of the discontinuous permafrost zone, form unique ecosystems in northern-boreal and arctic regions, but are now degrading throughout their distributional range due to climate warming. Permafrost thaw and the degradation of palsa mounds are likely to affect the biogeochemical stability of soil organic matter (that is, SOM resistance to microbial decomposition), which may change the net C source/sink character of palsa peatland ecosystems. In this study, we have assessed both biological and chemical proxies for SOM stability, and we have investigated SOM bulk chemistry with mid-infrared spectroscopy, in surface peat of three distinct peatland features in a palsa peatland in northern Norway. Our results show that the stability of SOM in surface peat as determined by both biological and chemical proxies is consistently higher in the permafrost-associated palsa mounds than in the surrounding internal lawns and bog hummocks. Our results also suggest that differences in SOM bulk chemistry is a main factor explaining the present SOM stability in surface peat of palsa peatlands, with selective preservation of recalcitrant and highly oxidized SOM components in the active layer of palsa mounds during intense aerobic decomposition over time, whereas SOM in the wetter areas of the peatland remains stabilized mainly by anaerobic conditions. The continued degradation of palsa mounds and the expansion of wetter peat areas are likely to modify the bulk SOM chemistry of palsa peatlands, but the effect on the future net C source/sink character of palsa peatlands will largely depend on moisture conditions and oxygen availability in peat.
The Orravatnsrustir palsa site, located north of the Hofsjokull glacier in Central Iceland, has well developed palsas located in a valley-like depression at 710-715 m a.s.l. and stands in remarkable contrast to the surrounding desert-like highland plateau. The purpose of this paper is to give an overview of the Orravatnsrustir palsa site, geographic distribution and geomorphic statistics related to size and permafrost thicknesses of the palsas, including recent changes. Icelandic palsas exhibit characteristics of both organic palsas and lithalsa (frozen mineral soil). They are subjected to intense aeolian deposition of volcanic materials. The palsas are often 40-200 cm high, with a 40-80 cm thick active layer and permafrost reaching more than 5 m depth. Measurements of the size of the palsas and the thickness of the active layer which started in 2001 indicate that their size is decreasing and the thickness of the active layer is increasing. These results are in agreement with the general warming trend which has occurred in Iceland during the last decade. (c) 2012 Elsevier B.V. All rights reserved.
Monitoring high latitude wetlands is required to understand feedbacks between terrestrial carbon pools and climate change. Hydrological variability is a key factor driving biogeochemical processes in these ecosystems and effective assessment tools are critical for accurate characterization of surface hydrology, soil moisture, and water table fluctuations. Operational satellite platforms provide opportunities to systematically monitor hydrological variability in high latitude wetlands. The objective of this research application was to integrate high temporal frequency Synthetic Aperture Radar (SAR) and high spatial resolution Light Detection and Ranging (LiDAR) observations to assess hydroperiod at a mire in northern Sweden. Geostatistical and polarimetric (PLR) techniques were applied to determine spatial structure of the wetland and imagery at respective scales (0.5 m to 25 m). Variogram, spatial regression, and decomposition approaches characterized the sensitivity of the two platforms (SAR and LiDAR) to wetland hydrogeomorphology, scattering mechanisms, and data interrelationships. A Classification and Regression Tree (CART), based on random forest, fused multi-mode (fine-beam single, dual, quad pol) Phased Array L-band Synthetic Aperture Radar (PALSAR) and LiDAR-derived elevation to effectively map hydroperiod attributes at the Swedish mire across an aggregated warm season (May-September, 2006-2010). Image derived estimates of water and peat moisture were sensitive (R-2 = 0.86) to field measurements of water table depth (cm). Peat areas that are underlain by permafrost were observed as areas with fluctuating soil moisture and water table changes.
This review presents a synthesis of four decades of palsa studies based on field experiments and observations mainly in Fennoscandia, as well as laboratory measurements. Palsas are peat-covered mounds with a permanently frozen core: in Finnish Lapland, they range from 0.5 to 7 m in height and from 2 to 150 m in diameter. These small landforms are characteristic of the southern margin of the discontinuous permafrost zone. Palsa formation requires certain environmental conditions: long-lasting air temperature below 0 degrees C, thin snow cover, and low summer precipitation. The development and persistence of their frozen core is sensitive to the physical properties of peat. The thermal conductivity of wet and frozen peat is high, and it decreases significantly as the peat dries and thaws. This affects the development of the active layer and makes its response to climate change complex. The insulating properties of dry peat during hot and dry summers moderate the thawing of the active layer on palsas. In contrast, humid and wet weather during the summer causes deep thawing and may destroy the frozen core of palsas. Ice layers in palsas have previously been interpreted as ice segregation features but because peat is not frost-susceptible, the ice layers are now reinterpreted as resulting from ice growth at the base of a frozen core that is effectively floating in a mire. (C) 2010 University of Washington. Published by Elsevier Inc. All rights reserved.
We propose an algorithm to estimate surface roughness and moisture level of active layer of permafrost over permafrost area. This algorithm is based on the Oh's semi-empirical model, and PALSAR data observed both in winter and summer seasons with vh polarization. PALSAR vh polarization data observed in winter is used to estimate surface roughness of permafrost. Then, the estimated surface roughness and PALSAR vh polarization data observed in summer is used to estimate the moisture level of the active layer of the permafrost. The moisture levels estimated from PALSAR data moderately matched with those of validation data taken in the field, while the surface roughness value shows some difference. The possible cause of this difference is that the surface roughness derived from the field data collection represents the roughness of the top of the sphagnum moss layer covered on the active layer of the permafrost, while the one estimated from PALSAR represents the roughness of the underlying active layer of the permafrost.
Recent accelerated decay of discontinuous permafrost at the Stordalen Mire in northern Sweden has been attributed to increased temperature and snow depth, and has caused expansion of wet minerotrophic areas leading to significant changes in carbon cycling in the mire. In order to track these changes through time and evaluate potential forcing mechanisms, this paper analyses a peat succession and a lake sediment sequence from within the mire, providing a record for the last 100 years, and compares these with monitored climate and active layer thickness data. The peat core was analysed for testate amoebae to reconstruct changes in peatland surface moisture conditions and water table fluctuations. The lake sediment core was analysed by near infrared spectroscopy to infer changes in the total organic carbon (TOC) concentration of the lake-water, and changes in delta C-13 and C, N and delta N-15 to track changes in the dissolved inorganic carbon (DIC) pool and the influence of diagenetic effects on sediment organic matter, respectively. Results showed that major shifts towards increased peat surface moisture and TOC concentration of the lake-water occurred around 1980, one to two decades earlier than a temperature driven increase in active layer thickness. Comparison with monitored temperature and precipitation from a nearby climate station indicates that this change in peat surface moisture is related to June-September (JJAS) precipitation and that the increase in lake-water TOC concentration reflects an increase in total annual precipitation. A significant depletion in C-13 of sediment organic matter in the early 1980s probably reflects the effect of a single or a few consecutive years with anomalously high summer precipitation, resulting in elevated DIC content of the lake water, predominantly originating from increased export and subsequent respiration of organic carbon from the mire. Based on these results, it was not possible to link proxy data obtained on peat and lake-sediment records directly to permafrost decay. Instead our data indicate that increased precipitation and anomalously high rainfall during summers had a significant impact on the mire and the adjacent lake ecosystem. We therefore propose that effects of increased precipitation should be considered when evaluating potential forcing mechanisms of recent changes in carbon cycling in the subarctic.
We measured vegetation patterns on palsas with reference to topographic characteristics on the Arctic National Wildlife Refuge, northern Alaska, to obtain benchmark data because of the changes expected from global warming. Vegetation was examined in 60 plots of area 50 cm x 50 cm by five environmental factors: water content in the peat and duff layers, groundwater level, slope angle, depth to frozen surface, and presence of pellets and feces. Three palsas were selected for the survey, and the heights were fewer than 50 cm from the groundwater surface. Based on TWINSPAN and canonical correspondence analysis, we confirmed that clear patterns of vegetation zonation had developed within a 60-cm difference in water level. Vaccinium vitis-idaea occurred well on the top areas of palsas, while Carex aquatilis was established on the bottom areas. Sphagnum spp. were established on intermediate locations between V. vitis-idaea and C. aquatilis. The prime determinant of the vegetation zonation seems to be water content in peat and duff layers rather than water level, although the five factors that we examined interact intricately with each other.