Freeze-thaw desertification (FTD) as a specific land degeneration form in high elevations is intensifying in alpine meadows due to climate change and human activities. It causes the formation of desertified patches (DPs), and further aggravating alpine meadow patchiness and impairing ecosystem functions such as water conservation, carbon sequestration and biodiversity maintenance. However, the impacts of FTD on the patch pattern, soil properties, and vegetation succession of alpine meadows and the elevation differences of these impacts still lack a comprehensive understanding. Here, we analyzed the patch patterns, soil and vegetation characteristics in typical FTD regions in the Qilian Mountains using aerial photography and field investigations along an elevation gradient. Our results indicated that, as elevation increases, the fragmentation of alpine meadows caused by FTD intensified, which was related to the elevational differentiation of freeze-thaw cycles and soil water holding capacity. DPs not only led to a decrease in soil water holding capacity and an increase in bulk density, but also caused surface soil sandification. Among them, the weakening of soil water holding capacity by DPs was particularly serious in high elevations. Additionally, the degradation of the original vegetation species com-munities in DPs caused the significant loss of vegetation cover, biomass and soil organic carbon, and made DPs exhibit certain alpine desert steppe characteristics, whereas the vegetation diversity of DPs had an increase at low elevations. Our findings highlight the significant impacts of FTD on the water conservation function and vegetation diversity of alpine meadows, and it is necessary to apply ecological protection measures to control DPs expansion such as fenced grazing, biological control and land cover (crop, vegetation, degradable plastic mulch, etc.).
Vegetation patch patterns, which are used as indicators of state, functionality, and catastrophic changes in the arid ecosystem, have received much attention. However, little is known about the controlling factors and indicators that underlie vegetation patch patterns in the alpine grassland ecosystem. Here, we firstly studied characteristics of vegetation patch patterns with aerial photography by using an unmanned aerial vehicle and evaluated the vegetation patch-size distribution with power law (PL) and truncated power law (TPL) models on the central part of the Qinghai-Tibetan Plateau (QTP). We then investigated the effects of environmental factors and biotic disturbances on vegetation patch patterns. The results showed that (1) there were four typical vegetation patch patterns, i.e. spot, stripe, sheet, and uniform patterns; (2) soil water content and air temperature were major environmental factors affecting vegetation patch patterns; (3) biotic disturbance of plateau pika (Ochotona curzoniae) affected vegetation patch patterns by changing the number, area, and connectivity of vegetation patches; and (4) vegetation patch-size distribution parameters were significantly related to soil hydrothermal variables (P < 0.01). We concluded that the development of alpine vegetation patch patterns was controlled by soil hydrothermal conditions and plateau pika's disturbance. We also proposed that gamma (TPL-PL) (difference between absolute values of slopes of TPL and PL curve fits) could serve as an effective indicator for monitoring alpine grassland conditions, and preventing patchiness was a critical task for the alpine ecosystem management and restoration.