We evaluated the morphology, geomorphic settings, and micrometeorological controls of sorted polygons, stripes, lobate patterns, and turf-banked terraces in two summit areas of Daisetsu Mountain, Japan, using orthophoto images and digital surface models generated from unmanned aerial vehicle observations and structure-from-motion techniques and in situ records of air temperature, wind speed/direction and ground temperatures. The sorted polygons on flat terrain are equiform and large (3.5 m in mean length), but on gentle slopes, they are elliptical and small (2.9 m). Sorted stripes and lobate patterns occur on slope steeper than 3.5 degrees-4.5 degrees. The form transition of sorted patterned grounds is considered due to activities of frost heave and thaw settlement, gelifluction, and frost creep, as well as the spatial pattern of soil wetness. In the windward slopes steeper than 3.5 degrees-4.5 degrees, the ground materials move downslope, forming lobate patterns and sorted stripes. On the flat surfaces and leeward slopes, snow accumulation prevents soils from cooling in winter, provides snowmelts to the soils, and thus thickens the seasonal thawing during summer, allowing sorting at greater depths and enlarging the diameters of the frost patterned forms. Snow redistribution and snowmelt infiltration produce locally moist soils, creating favorable environments for plant growth on leeward, that is, eastward sides of microtopography. Soil movements along slopes are dammed on the slope covered with dense vegetation cover where risers of turf-banked terrace are formed. This is the explanation why the turf-banked terraces are typically facing slightly eastward from principal slope direction.
Differential frost heave between fine (earthy) and coarse (gravelly) domains was monitored over 10 years (2013-2023) on a mountain-top flat ground subjected to both frequent diurnal and deep seasonal freezing. Monitoring objects include, ground heave, soil temperature down to 55 cm, soil moisture, air temperature, rainfall, and snow depth. The two domains, differing only in the presence of uppermost platy gravel about 1 cm in thickness, undergo frequent diurnal frost heave with about 1-cm-thick needle ice formation. Annual frequency and cumulative amount of frost heave are not significantly different between the two, but the fine domain is slightly more active particularly in spring when the near-surface soil at just above 0 degrees C permits rapid frost penetration. Differential heave mainly occurs as a time lag in the start and peak of heaving, on average, by about 1 h preceded at the fine domain, which tends to concentrate stones to the coarse domain. Frost heave activity shows a large interannual variation, primarily depending on the duration of snow-covered days. Frost heave activity also roughly correlates with annual mean air temperature, possibly reflecting a decrease in snowfall days.
We review the progress of research on permafrost and periglacial dynamics over the last two decades and explore future periglacial landscapes in Svalbard, High Arctic. This area has been subjected to rapid air and ground warming at a rate of 0.10.2 degrees C yr-1, as well as simultaneous thawing of the top layer of permafrost at a rate of about 1 cm yr-1 over the last two decades. Periglacial features studied include ice-wedge polygons, mudboils, sorted patterned ground, pingos, solifluction lobes, active-layer detachment slides, and rock glaciers. These landforms are concentrated within narrow alluvial plains and valley-side slopes but separated by geomorphological specifics and ground materials. Decadal-scale monitoring highlights climatic control of the morphology and dynamics of three landforms & horbar;ice-wedge polygons, mudboils, and rock glaciers & horbar;and the impact of long-term warming on their dynamics. Despite the location close to the southern limit of continuous permafrost, multiple cold spells in mid-winter activate thermal contraction cracking, which permits the growth of ice wedges. If such cold spells continue under a warmer climate, ice wedge could still grow below the deepening active layer. In a mudboil-small polygon landscape, seasonal frost heaving (or thaw settlement) of the central mound is coupled with closing (or opening) of the marginal crack. This movement would be maintained under a warmer climate and at a deeper active layer if the active layer is kept very humid. Although the contemporary cold climate is generally unfavorable for the growth of well-developed rock glaciers in Svalbard, slow permafrost creep at a rate of a few centimeters per year produces basal bulging of the valley-side talus slopes. The warming trend in the last decade has led to a steady acceleration of the movement. Further warming in the near future is expected to develop longer valley-side rock glaciers.
Schmidt-hammer exposure-age dating (SHD) was applied to similar to 180 medium- to large-scale solifluction features on the northern edge of Juyflye, Jotunheimen (southern Norway) using an electronic Schmidt-hammer (RockSchmidt) and an improved local SHD age-calibration equation. Age estimates from four different types of solifluction landforms were analysed and compared with those from recalibrated estimates from patterned ground previously investigated on Juvflye. Average SHD-age estimates are c. 9.8 and 9.3 ka for the two dominant morphological types of solifluction features ('type A' boulder tongues and 'type B' stone-banked solifluction lobes) and c. 8.6 ka for sorted stripes and circles. Our results indicate that active formation of all investigated types of solifluction features, sorted stripes, and sorted circles ceased in the Early Holocene, prior to the onset of the regional Holocene Thermal Maximum (HTM) at c. 7.7 ka. Formation of all of these periglacial landforms appears to have commenced shortly after local deglaciation (c. 11.4 ka) in water-saturated till. Alternative origins are rejected, including the possibility of development before the last glaciation, survival beneath cold-based glaciers, and exhumation in the Early Holocene. Cessation of activity is attributed to changing ground conditions affecting active layer processes, particularly reduced soil moisture and pore water pressure. Temporal variations of the altitudinal permafrost limits had little or no impact on the timing of either the Early Holocene climax in activity or subsequent stabilisation. Caution is therefore urged in the utilisation of large-scale solifluction and patterned ground landforms as palaeoclimatic indicators.
Active layer thickness in extremely cold regions is an indicator of global climate change, but it is also affected by the terrain types. Among the different terrain types typical to cold regions, patterned ground is of interest because it develops over time. Thus, investigating the active layer at different degrees of patterned ground development is required to understand the variability in its distribution. In this study, an electrical resistivity tomography (ERT) survey is conducted at three study sites to investigate the distribution of the active layer according to the degree of patterned ground development. The results of the ERT surveys show that the active layer is thinner, and the patterned ground develops better on an active layer with a small slope and stagnant porewater. Thawing of permafrost may be accelerated around patterned ground. As the ERT survey investigates geological structures without disturbing the target ground, it may be an effective method to monitor geological structures in extremely cold regions and interactions of the active layer with the surrounding conditions.
In response to increasing Arctic temperatures, ice-rich permafrost landscapes are undergoing rapid changes. In permafrost lowlands, polygonal ice wedges are especially prone to degradation. Melting of ice wedges results in deepening troughs and the transition from low-centered to high-centered ice-wedge polygons. This process has important implications for surface hydrology, as the connectivity of such troughs determines the rate of drainage for these lowland landscapes. In this study, we present a comprehensive, modular, and highly automated workflow to extract, to represent, and to analyze remotely sensed ice-wedge polygonal trough networks as a graph (i.e., network structure). With computer vision methods, we efficiently extract the trough locations as well as their geomorphometric information on trough depth and width from high-resolution digital elevation models and link these data within the graph. Further, we present and discuss the benefits of graph analysis algorithms for characterizing the erosional development of such thaw-affected landscapes. Based on our graph analysis, we show how thaw subsidence has progressed between 2009 and 2019 following burning at the Anaktuvuk River fire scar in northern Alaska, USA. We observed a considerable increase in the number of discernible troughs within the study area, while simultaneously the number of disconnected networks decreased from 54 small networks in 2009 to only six considerably larger disconnected networks in 2019. On average, the width of the troughs has increased by 13.86%, while the average depth has slightly decreased by 10.31%. Overall, our new automated approach allows for monitoring ice-wedge dynamics in unprecedented spatial detail, while simultaneously reducing the data to quantifiable geometric measures and spatial relationships.