共检索到 4

The Tibetan Plateau (TP) covers the largest regions under low- and mid-latitude permafrost. The evolution of permafrost has significantly affected the hydrology, biogeochemistry, and infrastructure of Asia. However, model reconstructions of long-term permafrost evolution with high accuracy and reliability are insufficient. Here, spatial changes in mean annual ground temperature at the depth where the annual amplitude is zero (MAGT) on the TP since 1981 were modeled and validated based on temperature records from 155 boreholes, and future changes were predicted under scenarios from the Climate Model Intercomparison Project 6 (CMIP6). The results indicated that the MAGT on the TP was approximately 1.5 degrees C (2010 - 2018), and the corresponding permafrost extent on the TP is estimated to be approximately 1.03 x 106 km2, which is projected to decrease to 0.77 x 106, 0.50 x 106, 0.30 x 106, and 0.17 x 106 km2 under the scenarios of shared socioeconomic pathway (SSP)126, SSP245, SSP370, and SSP585, respectively, by 2100. As predicted in the SSP585 scenario, permafrost is predicted to largely disappear from many basins of major Asian rivers, such as the Yarlung Zangpo-Brahmaputra, NuSalween, and Lancang-Mekong Rivers, between 2041 and 2060, followed by the Yellow and Yangtze Rivers between 2061 and 2080. Moreover, the original stable permafrost in the West Kunlun Mountains will change to transitional and unstable conditions. Our study offers comprehensive datasets of year-to-year ground temperatures and permafrost extent maps for the TP, which can serve as a fundamental resource for further investigations on the hydrogeology, engineering geology, ecology, and geochemistry of the TP.

期刊论文 2025-05-01 DOI: 10.1016/j.geoderma.2025.117287 ISSN: 0016-7061

Freezing/thawing indices are important indicators of the dynamics of frozen ground on the Qinghai-Tibet Plateau (QTP), especially in areas with limited observations. Based on the numerical outputs of Community Land Surface Model version 4.5 (CLM4.5) from 1961 to 2010, this study compared the spatial and temporal variations between air freezing/thawing indices (2 m above the ground) and ground surface freezing/thawing indices in permafrost and seasonally frozen ground (SFG) across the QTP after presenting changes in frozen ground distribution in each decade in the context of warming and wetting. The results indicate that an area of 0.60 x 10(6) km(2) of permafrost in the QTP degraded to SFG in the 1960s-2000s, and the primary shrinkage period occurred in the 2000s. The air freezing index (AFI) and ground freezing index (GFI) decreased dramatically at rates of 71.00 & DEG;C & BULL;d/decade and 34.33 & DEG;C & BULL;d/decade from 1961 to 2010, respectively. In contrast, the air thawing index (ATI) and ground thawing index (GTI) increased strikingly, with values of 48.13 & DEG;C & BULL;d/decade and 40.37 & DEG;C & BULL;d/decade in the past five decades, respectively. Permafrost showed more pronounced changes in freezing/thawing indices since the 1990s compared to SFG. The changes in thermal regimes in frozen ground showed close relations to air warming until the late 1990s, especially in 1998, when the QTP underwent the most progressive warming. However, a sharp increase in the annual precipitation from 1998 began to play a more controlling role in thermal degradation in frozen ground than the air warming in the 2000s. Meanwhile, the following vegetation expansion hiatus further promotes the thermal instability of frozen ground in this highly wet period.

期刊论文 2023-07-01 DOI: 10.3390/rs15143478

Rising temperatures in the Arctic and subarctic are driving the rapid thaw of permafrost by reducing permafrost cooling, increasing active layer thickness, and promoting talik formation. In this study, the cyrohydrogeology of a permafrost mound located within the discontinuous permafrost zone near Umiujaq (Nunavik, Quebec, Canada) is characterized through the analysis of a dataset covering more than two decades of monitoring. This dataset captures a high degree of interannual variability in air temperature and ground thermal conditions, as well as the formation and closure of a supra-permafrost talik. Data indicate that variable saturation and advective heat transport directly contribute to the expansion and contraction of the talik. Data further indicate the presence of two distinct thermo-hydrologic settings resulting from differences in surface conditions, as well as subsurface thermal and flow regimes. The first, found at the top of the mound feature, is characterized by very low moisture contents (& lt;0.05 m(3)/m(3)), while the second, found at the side of the mound feature, shows higher annual moisture contents that strongly influence the dynamics of heat and groundwater flow. The data were synthesized into a detailed conceptual model of the cyrohydrogeological dynamics that highlights the important role of hydrogeological characterization and long-term data sets in understanding the effects of groundwater flow on seasonal frost and permafrost dynamics. Specifically, the results presented here show that in the absence of long-term data sets, longer-period transient phenomena such as talik opening and closure may be misrepresented as uni-directional feedback loops, as opposed to highly dynamic temporary phenomena.

期刊论文 2023-01-01 DOI: 10.1029/2022WR032456 ISSN: 0043-1397

A model for predicting shallow depth soil temperatures is important and effective to assess the changes in soil conditions related to global climate change and local disturbances. Shallow-depth soil temperature estimation model in cold region in Alaska is developed based on thermal response using air temperature and shallow-depth soil water content during active layer development period of 160 days from May to October. Among the seven soil temperature measurement sites, data from four sites were used for model development, and the remaining three sites were used for model validation. Near the middle of the seven measurement sites, air temperature is monitored at one location. The proposed model implemented concepts of thermal response and cumulative temperature. Temperatures and soil water contents were measured using automated remote sensing technology. Consequently, it was confirmed that the developed model enables fast and accurate assessment of shallow-depth soil temperature during active soil layer development period.

期刊论文 2020-02-01 DOI: 10.3390/app10031058
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页