共检索到 5

Palsas and peat plateaus occur in various environmental conditions, but their driving environmental factors have not been examined across the Northern Hemisphere with harmonized datasets. Such comparisons can deepen our understanding of these landforms and their response to climate change. We conducted a comparative study between four regions: Hudson Bay, Iceland, Northern Fennoscandia, and Western Siberia by integrating landform observations and geospatial data into a MaxEnt model. Climate and hydrological conditions were identified as primary, yet regionally divergent, factors affecting palsa and peat plateau occurrence. Suitable conditions for these landforms entail specific temperature ranges (500-1500 thawing degree days, 500-4000 freezing degree days), around 300 mm of rainfall, and high soil moisture accumulation potential. Iceland's conditions, in particular, differ due to higher precipitation, a narrower temperature range, and the significance of soil organic carbon content. The annual thermal balance is a critical factor in understanding the occurrence of permafrost peatlands and should be considered when comparing different regions. We conclude that palsas and peat plateaus share similar topographic conditions but occupy varying soil conditions and climatic niches across the Northern Hemisphere. These findings have implications for understanding the climatic sensitivity of permafrost peatlands and identifying potential greenhouse gas emitters.

期刊论文 2025-01-01 DOI: 10.1002/ppp.2253 ISSN: 1045-6740

Vast stores of millennial-aged soil carbon (MSC) in permafrost peatlands risk leaching into the contemporary carbon cycle after thaw caused by climate warming or increased wildfire activity. Here we tracked the export and downstream fate of MSC from two peatland-dominated catchments in subarctic Canada, one of which was recently affected by wildlife. We tested whether thermokarst bog expansion and deepening of seasonally thawed soils due to wildfire increased the contributions of MSC to downstream waters. Despite being available for lateral transport, MSC accounted for <= 6% of dissolved organic carbon (DOC) pools at catchment outlets. Assimilation of MSC into the aquatic food web could not explain its absence at the outlets. Using delta C-13-Delta C-14-delta N-15-delta H-2 measurements, we estimated only 7% of consumer biomass came from MSC by direct assimilation and algal recycling of heterotrophic respiration. Recent wildfire that caused seasonally thawed soils to reach twice as deep in one catchment did not change these results. In contrast to many other Arctic ecosystems undergoing climate warming, we suggest waterlogged peatlands will protect against downstream delivery and transformation of MSC after climate- and wildfire-induced permafrost thaw.

期刊论文 2021-10-01 DOI: 10.1111/gcb.15756 ISSN: 1354-1013

Wildfire in boreal permafrost peatlands causes a thickening and warming of the seasonally thawed active layer, exposing large amounts of soil carbon to microbial processes and potential release as greenhouse gases. In this study, conducted in the discontinuous permafrost zone of western Canada, we monitored soil thermal regime and soil respiration throughout the 2016 growing season at an unburned peat plateau and two nearby peat plateaus that burned 16 and 9 years prior to the study. Maximum seasonal soil temperature at 40 cm depth was 4 ;C warmer in the burned sites, and active layers were ?90 cm thicker compared to the unburned site. Despite the deeper and warmer seasonally thawed active layer, we found higher soil respiration in the unburned site during the first half of the growing season. We partitioned soil respiration into contribution from shallow and deep peat using a model driven by soil temperatures at 10 and 40 cm depths. Cumulative estimated deep soil respiration throughout the growing season was four times greater in the burned sites than in the unburned site, 32 and 8 g C m(?2) respectively. Concurrently, cumulative shallow soil respiration was estimated to be lower in the burned than unburned site, 49 and 80 g C m(?2) respectively, likely due to the removal of the microbially labile soil carbon in the shallow peat. Differences in deep contribution to soil respiration were supported by radiocarbon analysis in fall. With effects of wildfire on soil thermal regime lasting for up to 25 years in these ecosystems, we conclude that increased loss of deep, old, soil carbon during this period is of similar magnitude as the direct carbon losses from combustion during wildfire and thus needs to be considered when assessing overall impact of wildfire on carbon cycling in permafrost peatlands.

期刊论文 2019-12-01 DOI: 10.1088/1748-9326/ab4f8d ISSN: 1748-9326

Climate warming has inevitable impacts on the vegetation and hydrological dynamics of high-latitude permafrost peatlands. These impacts in turn determine the role of these peatlands in the global biogeochemical cycle. Here, we used six active layer peat cores from four permafrost peatlands in Northeast European Russia and Finnish Lapland to investigate permafrost peatland dynamics over the last millennium. Testate amoeba and plant macrofossils were used as proxies for hydrological and vegetation changes. Our results show that during the Medieval Climate Anomaly (MCA), Russian sites experienced short-term permafrost thawing and this induced alternating dry-wet habitat changes eventually followed by desiccation. During the Little Ice Age (LIA) both sites generally supported dry hummock habitats, at least partly driven by permafrost aggradation. However, proxy data suggest that occasionally, MCA habitat conditions were drier than during the LIA, implying that evapotranspiration may create important additionaleco-hydrological feedback mechanisms under warm conditions. All sites showed a tendency towards dry conditions as inferred from both proxies starting either from ca. 100 years ago or in the past few decades after slight permafrost thawing, suggesting that recent warming has stimulated surface desiccation rather than deeper permafrost thawing. This study shows links between two important controls over hydrology and vegetation changes in high-latitude peatlands: direct temperature-induced surface layer response and deeper permafrost layer-related dynamics. These data provide important backgrounds for predictions of Arctic permafrost peatlands and related feedback mechanisms. Our results highlight the importance of increased evapotranspiration and thus provide an additional perspective to understanding of peatland-climate feedback mechanisms. (C) 2018 Elsevier Ltd. All rights reserved.

期刊论文 2018-02-15 DOI: 10.1016/j.quascirev.2018.01.003 ISSN: 0277-3791

Ice-wedge polygon (IWP) peatlands in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from an IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, delta C-13), stable water isotopes (delta O-18, delta D), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUS) correspond to the main stages of deposition (1) in a thermokarst lake (SW : 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions of the IWP field that developed after drainage (SU3: 3120 cal yrs BP to 2012 CE). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatom species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic diatom species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene. (C) 2016 Elsevier Ltd. All rights reserved.

期刊论文 2016-09-01 DOI: 10.1016/j.quascirev.2016.02.008 ISSN: 0277-3791
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页