Atrazine (ATR), a widely used herbicide, poses significant environmental and health risks due to its high solubility and adsorption in soil. ATR exposure can lead to nephrotoxicity in humans and animals. Curcumin (Cur), an active compound in Curcuma species, is renowned for its antioxidant and anti-inflammatory properties, with potential to mitigate chronic disease risks. We hypothesized that the addition of Cur could alleviate renal impairment associated with ATR exposure and carried out experiments using mice as subjects. This study investigates whether Cur can attenuate ATR-induced nephrotoxicity in mice by modulating mitophagy and apoptotic pathways. Our findings illustrate that consumption with Cur attenuates nephrotoxicity induced by ATR, as evidenced by lowered serum concentrations of uric acid (UA), blood urea nitrogen (BUN), and creatinine (CRE), established biomarkers of renal injury. Moreover, Curcumin enhances renal antioxidant defense mechanisms in ATR-exposed mice, as indicated by elevated levels of total antioxidant capacity (T-AOC), catalase (CAT), and glutathione peroxidase (GSH-Px), alongside reduced levels of malondialdehyde (MDA). Histopathological and electron microscopy analyses further corroborate these findings, showing reduced organelle damage, particularly mitochondrial ridge breakage and vacuolization, and increased autophagic lysosomes. Cur further enhances PINK1/Parkin-mediated autophagy, as evidenced by elevated levels of PINK1, Parkin, LC3BII, and P62 compared to ATR-treated mice. Moreover, Cur mitigates the mitochondrial apoptotic pathway, indicated by the down-regulation of apoptosis-related genes (Cytochrome C (Cyto-C), Caspase3, Caspase9) and the proapoptotic marker (Bax), along with the up-regulation of the anti-apoptotic marker (Bcl-2) at both transcriptional and translational levels compared to ATR-treated mice. In summary, Cur demonstrates nephroprotective properties against ATR-induced injury through the enhancement of mitochondrial autophagy and display of antiapoptotic actions, underscoring its curative potency as a treatment for nephrotoxicity caused by ATR.
Pesticides serve a crucial function in contemporary farming practices, safeguarding agricultural crops against pest infestations and boosting production outputs. However, indiscriminate use has caused environmental and human health damage. This study aimed to develop and validate a gas chromatography-flame ionization detection (GC-FID) methodology for the direct and routine analysis of spiromesifen residues in soil, leaves, and tomato fruits. The proposed method prioritizes simplicity by avoiding derivatization steps, offering advantages over existing approaches that utilize lengthy multi-step extraction or derivatization prior to GC analysis. A key novelty of this work is the development of a QuEChERS extraction coupled directly to GC-FID without further clean-up or chemical treatment steps, rendering the method more convenient and accessible for routine monitoring applications. Factors evaluated included: sample solvent; inlet and column temperature profiles; inlet type; sample volume; and injection technique. Recovery and matrix effect studies were conducted by fortifying tomato, leaf, and soil matrices at three different concentrations (0.5, 1, and 10 mu g ml(-1)). Quadruplicate analyses (n = 4) yielded mean recoveries of 98.74% (fruits), 93.92% (leaves), and 94.18% (soil), confirming efficient extraction. Matrix effects were negligible at -7.9%,-7.8%, and -5.3%, respectively. The chromatographic linearity of the developed GC-FID method was excellent over the 0.002-20 mu g ml(-1) range with R-2 > 0.9979. The method demonstrated good precision, with inter- and intra-day RSD% ranging from 0.06-1.8%, below the 3% limit. GC-MS analysis confirmed spiromesifen identification. Under greenhouse conditions, residual levels were 1.39 mg/kg in soil, 8.24 mg/kg in tomato, and 3.39 mg/kg in leaves. Dissipation followed first-order kinetics with a half-life of 1.6 days. The optimized GC-FID method is promising for monitoring spiromesifen usage and guiding agricultural practices.