Phosphorus (P) is an essential macronutrient for all organisms that can be redistributed between terrestrial and oceanic systems via atmospheric emission, transport, transformation, and deposition. Moreover, since natural P mobilization from the lithosphere to ecosystems is a relatively slow process, the role of atmospheric P seems to play an important role in its cycling. This paper provides a comprehensive review of the analytical methods used for characterizing atmospheric P species and the methods used for identifying P sources (e.g., oxygen stable isotope compositions of phosphate, & delta;18OP) discussing their respective suitability, advantages, and limitations. While at a regional scale & delta;18OP of atmospheric P are generally source-specific, at a more global scale these isotope compositions tend to overlap between sources, rendering their tracer potential more difficult. Further-more, various sources of atmospheric P and their fluxes are compiled, and the potential uncertainties in the estimates of their respective contributions are reviewed, which suggest that more model inter-comparations, parameter optimizations, and field observations are still needed. Moreover, we summarize the long-range transport process controlling P atmospheric dispersion at various scales (focusing on dust and biomass burning). In addition, the transformation mechanism, especially acid dissolution, that modifies the P cycle during its residence time in the atmosphere is depicted. Finally, we propose that land cover may be a potential key control to the atmospheric P deposition rate based on the critical analysis of previously published rates. This review allows us to ultimately propose key recommendations for fostering future research on P geochemical cycling.
Atmospheric phosphorus is a vital nutrient for ecosystems whose sources and fate are still debated in the fragile Himalayan region, hindering our comprehension of its local ecological impact. This study provides novel insights into atmospheric phosphorus based on the study of total suspended particulate matter at the Qomolangma station. Contrary to the prevailing assumptions, we show that biomass burning (BB), not mineral dust, dominates total dissolved phosphorus (TDP, bioavailable) deposition in this arid region, especially during spring. While total phosphorus is mainly derived from dust (77% annually), TDP is largely affected by the transport of regional biomass-burning plumes from South Asia. During BB pollution episodes, TDP causing springtime TDP fluxes alone accounts for 43% of the annual budget. This suggests that BB outweighs dust in supplying bioavailable phosphorus, a critical nutrient, required to sustain Himalayas' ecological functions. Overall, this first-hand field evidence refines the regional and global phosphorus budget by demonstrating that BB emission, while still unrecognized, is a significant source of P, even in the remote mountains of the Himalayas. It also reveals the heterogeneity of atmospheric phosphorus deposition in that region, which will help predict changes in the impacted ecosystems as the deposition patterns vary.
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.