共检索到 4

Disinfecting Aspergillus flavus represents a promising strategy to mitigate aflatoxin contamination in agricultural soils and crops. In this study, the efficient disinfection of Aspergillus flavus using a g-C3N4/alpha-Fe2O3 heterojunction under visible light irradiation, along with the roles and mechanisms of the main reactive oxygen species involved in the disinfection process were demonstrated. The g-C3N4/alpha-Fe2O3 exhibited a high photocatalytic disinfection efficiency of up to 91 %, with hydroxyl radicals (center dot OH) identified as the main active species. The production of chitin in the cell walls of Aspergillus flavus was mainly interfered with center dot OH, leading to the destruction of cellular components such as carbohydrates, proteins, and lipids during the disinfection process. The metabolic interference induced by center dot OH resulted in cell structural damage and the release of essential intracellular constituents, ultimately leading to the death of Aspergillus flavus. These findings provided valuable insights into Aspergillus flavus control that was beneficial for its future agricultural applications.

期刊论文 2025-06-01 DOI: 10.1016/j.jece.2025.116876 ISSN: 2213-2929

Rainwater is susceptible to pollutants such as sulphur dioxide, nitrogen oxides, heavy metals, and particles, posing challenges to water quality protection and soil degradation, impacting ecosystems and agriculture. The study focuses on the effectiveness of combined ozonation and photocatalysis in improving physicochemical parameters and reducing toxic substances. Integrated analyses, including ecotoxicological assessments, evaluate the impact of treatment on actual rainwater samples. The results indicate significant reductions in color, heavy metals, and organic pollutants after treatment. Microbiological analyses reveal the inactivation of E. coli, which is crucial for safe water reuse. Ecotoxicity studies show no toxicity to crustaceans, but slight toxicity to algae and bioluminescence bacteria in post-treatment samples. Genotoxicity assessments indicate that there is no detectable DNA damage. Overall, the study highlights the complex nature of rainwater pollution and the efficacy of photocatalytic ozonation in reducing contaminants, underscoring the need for more research to ensure sustainable water resource management.

期刊论文 2024-07-01 DOI: 10.3390/su16135352

Exhaust emissions and road runoff pollution pose significant environmental challenges, leading to severe air pollution and irreversible soil damage, respectively. The adoption of self-cleaning road surfaces with photocatalytic properties has emerged as an effective approach to combat both types of pollution. Currently, nano titanium dioxide (TiO2) stands as the most widely used semiconductor for photocatalytic pavements. However, its limited light/radiation utilization remains a concern. To address this, the present study focuses on the use of the green nanomaterial graphene-like phase carbon nitride (g-C3N4), which has a smaller band gap to improve its light utilization. Comprehensive characterizations were performed to elucidate its physical/chemical properties. Subsequently, photocatalytic road coatings with various active substance contents were prepared by incorporating g-C3N4 into epoxy resin, and the functional pavement's performances were evaluated. A laboratory assessing method for the degradation of runoff pollution and NO contaminant was devised, enabling the evaluation of the redox capacity of semiconductive photocatalysts. Experimental results demonstrate that the nano gC3N4 photocatalytic coating exhibits significant enhancement in degradation efficiency for a typical water pollutant, methylene blue (MB), being 2.76 times that of the nano TiO2 photocatalytic coating. Additionally, its ability to degrade NO gaseous contaminant under visible-light irradiation is 7 times more than the control sample of TiO2 coating. Moreover, the photocatalytic coating has good anti-slip property and long-term performance. Thus, nano g-C3N4 proves to be a more suitable semiconductor material for self-cleaning road surfaces, holding tremendous potential to mitigate diverse pollution arising from transportation under natural light conditions.

期刊论文 2024-01-12 DOI: 10.1016/j.conbuildmat.2023.134553 ISSN: 0950-0618

This study aimed to improve the multifunctional properties (including photocatalysis, stability reusability, selfcleaning, antibacterial effects, and thermal radiation shielding) of cellulose fabrics through incorporation of TiO2 nanoparticles. To achieve this, anatase TiO2 nanoparticles were synthesized in situ and deposited onto cotton fabrics through hydrothermal method. The presence of TiO2 nanoparticles in cellulose fabrics greatly enhanced the photocatalytic efficiency and adsorption range and did not damage the fabric fibers. The TiO2-coated cotton exhibited an outstanding photocatalytic efficiency, with dye removal rates of 92.20 % +/- 0.015 % and 99.68 % +/- 0.002 % under UV-A and visible illumination, respectively. In addition, the material exhibited thermal radiation shielding properties, in which no heat absorption was observed within 60 min at 40 degrees C-70 degrees C. To further enhance the hydrophobicity, the TiO2-coated cotton was surface-modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS). The resulting PFDTS/TiO2-coated cotton was superhydrophobic with a water contact angle of 156.50 degrees +/- 0.05 degrees with a sliding angle of 4.33 degrees +/- 0.47 degrees and roughness of 67.35 nm. The superhydrophobicity of the PFDTS/TiO2-coated cotton also facilitated self-cleaning through water injection to remove soil impurities. Furthermore, the PFDTS/TiO2-coated cotton exerted antibacterial effects against gramnegative (Escherichia coli) and gram-positive (Staphylococcus aureus) bacteria under UV-A or visible illumination. These nanocomposite fabrics with multifunctional properties have potential for industrial, military, and medical applications.

期刊论文 2024-01-01 DOI: 10.1016/j.ijbiomac.2023.128321 ISSN: 0141-8130
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页