共检索到 8

Background Bermudagrass (Cynodon dactylon) has a long history as an excellent forage grass, and salt stress will inhibit its growth and development. In order to minimize the damage, it is necessary to continuously develop innovative technologies and management strategies. Results This study evaluated the salt tolerance of new Bermudagrass strains 'FB2019R101' and 'FB2019R105' compared to commercial varieties 'Wrangler' and 'A12359' under simulated soil salinity conditions through seawater irrigation. Through correlation analysis of growth, physiological, and nutritional indicators, and principal component analysis, core indicators and weights for salt tolerance evaluation were identified. The salt-tolerant varieties were 'FB2019R101' and 'FB2019R105'. Under salinity stress, the plants of Bermudagrass varieties with salt tolerance suffered less damage as a whole, which could better regulate the osmotic balance inside and outside cells, accumulate more nutrients and have stronger ability to resist salt damage. The expression level of salt-tolerant variety CdCINV1, CdSPS1, CdSUS5, and CdSWEET6 was up-regulated under salt stress. CdCINV1, CdSPS1, CdSUS5 can promote the transformation of sucrose into glucose and fructose in Bermudagrass under salt stress, and CdSWEET6 can promote the accumulation of fructose. Conclusions 'FB2019R101' and 'FB2019R105' exhibited higher salt tolerance, with minimal impact on their biomass, physiological, and nutritional indicators under salt stress. The comprehensive evaluation revealed a salt tolerance ranking of 'FB2019R105' > 'FB2019R101' > 'Wrangler' > 'A12359'. This study provides significant reference for the bioremediation of coastal saline soils and promotes research on the application of Bermudagrass under salt stress conditions. CdCINV1, CdSPS1, CdSUS5, and CdSWEET6 can improve the salt tolerance of plants by regulating the changes of carbohydrates.

期刊论文 2025-03-01 DOI: 10.1186/s12870-025-06281-8 ISSN: 1471-2229

Background: Cold resistance in alfalfa (Medicago sativa L.) is significantly influenced by root system type. The root system plays a crucial role in water absorption and soil stress response. This study investigates the physiological and biochemical responses of creeping-rooted and taprooted alfalfa to cold stress during early winter and mid-winter periods. Methods: Samples were collected on November 3, 2023 and January 7, 2024, from the experimental plot. Roots at a depth of 20 cm were cleaned with distilled water and stored in cryopreservation tubes at ultra-low temperatures. Free proline, soluble sugars, soluble proteins, malondialdehyde (MDA), superoxide dismutase (SOD) activity and catalase (CAT) activity were measured using standard biochemical methods. Result: Results indicated that with decreasing temperatures, the contents of soluble sugars, soluble proteins, free proline, MDA and CAT activity increased, whereas SOD activity decreased. In the early overwintering stage, creeping-rooted alfalfa exhibited higher soluble sugar content and SOD activity compared to taprooted alfalfa. During the overwintering period, creeping-rooted alfalfa maintained higher levels of soluble sugars, soluble proteins, MDA and CAT and SOD activities. Principal component analysis identified CAT, MDA, soluble sugars and soluble proteins as key indicators for evaluating cold resistance in alfalfa.

期刊论文 2024-11-01 DOI: 10.18805/LRF-811 ISSN: 0250-5371

Red rice ( Oryza glaberrima L.) is a main food ingredient with some special characteristics and health benefits; therefore, enhancing its grain yield is necessary. However, the limited fertile land causes cultivation in the sub-optimal land, such as saline soil. Saline stress can cause damage to plant cells; hence, it is vital to apply exogenous antioxidants that can act as osmoprotectants. The presented study sought to determine the physiological characteristics of red rice under salinity stress conditions with ascorbic acid applications. The study commenced in a factorial separate plot design (SPD) with three features. The salinity levels (3-4 and >4-5 mho/cm) comprised the main plots, red rice cultivars (Inpari 24, Inpari 7, Pamelen, and MSP17) in the subplots, with the ascorbic acid concentrations (0, 500, 1000, and 1500 ppm) kept in the sub-sub-plots. The results showed that the studied red rice cultivars differed in responses to ascorbic acid concentrations under saline soil conditions. Cultivar MSP17 was the most tolerant genotype to salinity stress compared with the three other red rice cultivars based on physiological attributes. Applying ascorbic acid improved red rice genotypes' physiological characteristics (especially chlorophyll content and nutrient uptake) under saline stress conditions.

期刊论文 2024-08-01 DOI: 10.54910/sabrao2024.56.4.10 ISSN: 1029-7073

To investigate the effects of Pseudomonas monteilii SX001 on various parameters of cucumber plants under salt stress, the salt-sensitive cucumber variety Jinyou No. 4 was used as the test material, and coconut bran was used to simulate salt stress by applying NaCl solution. The results indicated that salt stress significantly reduced the morphological structure, relative growth rate, root morphology, and photosynthetic parameters of the cucumber plants. Leaf starch, soluble sugar, and sucrose contents significantly increased, whereas their levels in roots decreased. Cell membrane damage leads to the accumulation of reactive oxygen species and malondialdehyde, with notable increases in the activities of major antioxidant enzymes such as SOD, CAT, and POD. Nitrogen metabolism was disrupted, as evidenced by a significant decrease in nitrate nitrogen content and an increase in ammonium nitrogen content, as well as a significant reduction in the activity of NR enzymes involved in nitrogen metabolism. The enzyme activity in the cucumber rhizosphere soil decreased. However, Pseudomonas monteilii SX001 significantly enhanced the growth of cucumber seedlings under salt stress, improved photosynthetic efficiency, and facilitated sugar transformation and transport via glucose metabolism. Additionally, Pseudomonas monteilii SX001 reduced the reactive oxygen content and increased antioxidant enzyme activity. It also increased the activity of substrate enzymes and decreased the diversity of rhizosphere soil microorganisms but also increased the abundance of Asticcacaulis, Acinetobacter, Brevundimonas, Pseudomonas, and Enterobacter. These findings demonstrate that Pseudomonas monteilii SX001 is a promising bioinoculant for alleviating salt stress in cucumber production and improving soil health.

期刊论文 2024-08-01 DOI: 10.3390/agronomy14081642

Soil salinization has become one of the major problems that threaten the ecological environment. The aim of this study is to explore the mechanism of salt tolerance of hybrid walnuts (Juglans major x Juglans regia) under long-term salt stress through the dynamic changes of growth, physiological and biochemical characteristics, and anatomical structure. Our findings indicate that (1) salt stress inhibited seedling height and ground diameter increase, and (2) with increasing salt concentration, relative water content (RWC) decreased, and proline (Pro) and soluble sugar (SS) content increased. The Pro content reached a maximum of 549.64 mu g/g on the 42nd day. The increase in superoxide dismutase (SOD) activity (46.80-117.16%), ascorbate peroxidase (APX) activity, total flavonoid content (TFC), and total phenol content (TPC) under salt stress reduced the accumulation of malondialdehyde (MDA). (3) Increasing salt concentration led to increases and subsequent decreases in the thickness of palisade tissues, spongy tissues, leaves, and leaf vascular bundle diameter. Upper and lower skin thickness, root periderm thickness, root diameter, root cortex thickness, and root vascular bundle diameter showed different patterns of change at varying stress concentrations and durations. Overall, the study concluded that salt stress enhanced the antireactive oxygen system, increased levels of osmotic regulators, and low salt concentrations promoted leaf and root anatomy, but that under long-term exposure to high salt levels, leaf anatomy was severely damaged. For the first time, this study combined the anatomical structure of the vegetative organ of hybrid walnut with physiology and biochemistry, which is of great significance for addressing the challenge of walnut salt stress and expanding the planting area.

期刊论文 2024-07-01 DOI: 10.3390/plants13131840 ISSN: 2223-7747

Uneven rainfall, in the context of global warming, can cause soil moisture fluctuations (SMFs) that harm crop growth, and it is not yet known whether nitrogen (N) can mitigate the harm caused by a strong SMF. This paper uses okra as a test subject and sets three SMFs of 45-55% FC (W-1), 35-65% FC (W-2), and 25-75% FC (W-3) and three N applications of 0 kg hm(-2) (N-0), 110 kg hm(-2) (N-1), and 330 kg hm(-2) (N-2) to investigate the effects of SMF and N application on the physiological and biochemical aspects of okra. The results demonstrated that okra exhibited the highest values in stem diameter, number of leaves, photosynthesis characteristics, antioxidant enzyme activity, and yield under the N-1 treatment. The average yield in the N-1 treatment was 149.8 g, significantly surpassing the average yields of the N-0 (129.8 g) and N-3 (84.0 g) treatments. Stomatal density, antioxidant enzyme activity, malondialdehyde content, and proline content in okra leaves were highest in the W-3 treatment, indicating that plants experienced stress in the W-3 treatment. However, the agronomic traits and yields of okra in the N-1 treatment were higher than those in the N-0 and N-1 treatments, indicating that the crop damage caused by W-3 could be mitigated by an appropriate amount of N application. The N1W1 treatment emerged as the most suitable combination for okra growth in this study, exhibiting the highest stem diameter, leaf count, photosynthetic characteristics, and yield (201.3 g). Notably, this yield was 67.8% higher than the lowest treatment (N2W3), signifying a significant improvement.

期刊论文 2024-05-01 DOI: 10.3390/horticulturae10050425

Excessive heavy metal content in soil can seriously hinder plant physiological metabolism and growth. This study, with soybean, examined how drip irrigation reduced heavy metal toxicity. The drip irrigation experiments with four irrigation frequencies were conducted by controlling the lower limit of the soil matric potential (D1: -10 kPa; D2: -20 kPa; D3: -30 kPa; D4: -40 kPa). Through comparison with traditional surface irrigation, the effects of drip irrigation on heavy metal distribution, soybean growth status, physiological metabolism and transcriptome under Cd, Pb and Cr(VI) composite pollution were comprehensively analyzed. The results show that (i) The Cd, Pb and Cr(IV) in soil migrated away from the plant under drip irrigation, thereby reducing the inhibition of heavy metal stress on soybean growth at the root, among which D1 had the best improvement effect on soybean growth. (ii) Drip irrigation improved the resistance of soybean to heavy metal stress, and promoted the transport and fixation of free Cd2+, Pb2+ and Cr6+ in cells, thereby reducing the damage of oxidative stress and heavy metal ions to cell structure. (iii) Drip irrigation was conducive to the energy supply and protein stability of cell physiological metabolism, which helped the improvement of soybean physiological activity. Overall, compared with surface irrigation, drip irrigation reduced the toxicity of heavy metals to soybeans by moving heavy metals out of the root zone and enhancing physiological activity. The results of this study can provide a theoretical basis for the application of drip irrigation technology in the prevention and control of heavy metal pollution, and provide a new strategy for the safe production of agriculture.

期刊论文 2024-03-01 DOI: 10.1016/j.agwat.2024.108670 ISSN: 0378-3774

Legumes play a crucial role in the restoration and utilization of salinized grassland. To explore the physiological response mechanism of Astragalus membranaceus and Medicago sativa seedlings to salt stress, salt stress culture experiments with five NaCl concentration treatments (0 mmol/L, 50 mmol/L, 100 mmol/L, 200 mmol/L, and 300 mmol/L) were conducted on these two legume seedlings. Morphological characteristics, physiological features, biomass, and the protective enzyme system were measured for both seedlings. Correlation analysis, principal component analysis (PCA), and membership function analysis (MFA) were conducted for each index. Structural equation modeling (SEM) was employed to analyze the salt stress pathways of plants. The results indicated that number of primary branches (PBN), ascorbate peroxidase (APX) activity in stems and leaves, catalase (CAT) activity in roots, etc. were identified as the primary indicators for evaluating the salt tolerance of A. membranaceus during its seedling growth period. And CAT and peroxidase (POD) activity in roots, POD and superoxide dismutase (SOD) activity in stems and leaves, etc. were identified as the primary indicators for evaluating the salt tolerance of M. sativa during its growth period. Plant morphological characteristics, physiological indexes, and underground biomass (UGB) were directly affected by salinity, while physiological indexes indirectly affected the degree of leaf succulence (LSD). Regarding the response of the protective enzyme system to salt stress, the activity of POD and APX increased in A. membranaceus, while the activity of CAT increased in M. sativa. Our findings suggest that salt stress directly affects the growth strategies of legumes. Furthermore, the response of the protective enzyme system and potential cell membrane damage to salinity were very different in the two legumes.

期刊论文 2024-01-24 DOI: 10.3389/fpls.2023.1342219 ISSN: 1664-462X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页