共检索到 4

Atmospheric aerosols have been found to influence the development of planetary boundary layer (PBL) and hence to aggravate haze pollution in megacities. PBL height (PBLH) determines the vertical extent to which the most pollutant effectively disperses and is a key argument in pollution study. In this study, we quantitatively evaluate aerosol radiation effect on PBL, as well as assessment of surface cooling effect and atmosphere heating effect. All the data are measured at a site of Beijing from 2014 to 2017, of which PBLH is retrieved from micro pulse lidar and aerosol optical depth (AOD) from sunphotometer. Case study shows qualitatively that relative high aerosol load reduces PBLH, and in turn causes a high surface PM2.5 concentration. We preliminarily reveal the influential mechanism of aerosol on PBL. The influence of aerosol on the radiation flux of PBL is analyzed, with the correlation coefficient (R) of 0.938 between AOD and radiative forcing of BOA (RFBOA) and R = 0.43 between RFBOA and PBLH. Also, AOD is found to negatively correlate with PBLH (R = -0.41). With the increase of AOD, the cooling effect of surface is enhanced, and further impede the development of PBL. Due to aerosol-induced reduction of PBLH, near surface PM2.5 concentration surges and presents an exponential growth following AOD. Then, it is speculated and testified that the relationship between SSA (single scatting albedo) and PBLH would be determined by the location of absorbing aerosol within PBL. The upper PBL absorbing aerosol may decrease PBLH, while the lower absorbing aerosol appear to enhance PBLH. The study probably can provide effective observational evidence for understanding the effect of aerosol on PBL and be a reference of air pollution mitigation in Beijing and its surrounding areas. (C) 2019 Elsevier Ltd. All rights reserved.

期刊论文 2019-09-01 DOI: 10.1016/j.envpol.2019.05.070 ISSN: 0269-7491

The aerosol microphysical, optical and radiative properties of the whole column and upper planetary boundary layer (PBL) were investigated during 2013 to 2018 based on long-term sun-photometer observations at a surface site (similar to 106 m a.s.l.) and a mountainous site (similar to 1225 m a.s.l.) in Beijing. Raman-Mie lidar data combined with radiosonde data were used to explore the aerosol radiative effects to PBL during dust and haze episodes. The results showed size distribution exhibited mostly bimodal pattern for the whole column and the upper PBL throughout the year, except in July for the upper PBL, when a trimodal distribution occurred due to the coagulation and hygroscopic growth of fine particles. The seasonal mean values of aerosol optical depth at 440 nm for the upper PBL were 0.31 +/- 0.34, 0.30 +/- 0.37, 0.17 +/- 0.30 and 0.14 +/- 0.09 in spring, summer, autumn and winter, respectively. The single-scattering albedo at 440 nm of the upper PBL varied oppositely to that of the whole column, with the monthly mean value between 0.91 and 0.96, indicating weakly to slightly strong absorptive ability at visible spectrum. The monthly mean direct aerosol radiative forcing at the Earth's surface and the top of the atmosphere varied from -40 +/- 7 to -105 +/- 25 and from -18 +/- 4 to -49 +/- 17 W m(-2), respectively, and the maximum atmospheric heating was found in summer (similar to 66 +/- 12 W m(-2)). From a radiative point of view, during dust episode, the presence of mineral dust heated the lower atmosphere, thus promoting vertical turbulence, causing more air pollutants being transported to the upper air by the increasing PBLH. In contrast, during haze episode, a large quantity of absorbing aerosols (such as black carbon) had a cooling effect on the surface and a heating effect on the upper atmosphere, which favored the stabilization of PBL and occurrence of inversion layer, contributing to the depression of the PBLH. (C) 2019 Elsevier B.V. All rights reserved.

期刊论文 2019-07-15 DOI: 10.1016/j.scitotenv.2019.03.418 ISSN: 0048-9697

Aerosol-planetary boundary layer (PBL) interactions have been found to enhance air pollution in megacities in China. We show that black carbon (BC) aerosols play the key role in modifying the PBL meteorology and hence enhancing the haze pollution. With model simulations and data analysis from various field observations in December 2013, we demonstrate that BC induces heating in the PBL, particularly in the upper PBL, and the resulting decreased surface heat flux substantially depresses the development of PBL and consequently enhances the occurrences of extreme haze pollution episodes. We define this process as the dome effect of BC and suggest an urgent need for reducing BC emissions as an efficient way to mitigate the extreme haze pollution in megacities of China.

期刊论文 2016-03-28 DOI: 10.1002/2016GL067745 ISSN: 0094-8276

Aerosols, both natural as well as anthropogenic, affect the radiative forcing of Earth's climate and reduce surface albedo. The Planetary Boundary Layer (PBL) height, which depends upon surface heat budget, is analyzed considering the increase in green house gases (GHGs) from pre-industrial to post-industrial era. The PBL climatology shows deeper PBL during pre-monsoon and summer monsoon seasons as compared to post-monsoon and winter. The PBL height has decreased in post-industrial decade compared to pre-industrial decade. The PBL height reduction is due to increasing aerosol and GHGs' concentrations in the recent decades, which causes surface warming and upper tropospheric cooling. Similarly, due to higher loading of the volcanic aerosol injected from the low latitude eruptions, the atmospheric circulation has been affected. (C) 2014 Elsevier Ltd. All rights reserved.

期刊论文 2014-05-01 DOI: 10.1016/j.jastp.2014.02.007 ISSN: 1364-6826
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页