Forests provide multiple ecosystem services including water and soil protection, biodiversity conservation, carbon sequestration, and recreation, which are crucial in sustaining human health and wellbeing. Global changes represent a serious threat to Mediterranean forests, and among known impacts, there is the spread of invasive pests and pathogens, often boosted by climate change and human pressure. Remote sensing can provide support to forest health monitoring, which is crucial to contrast degradation and adopt mitigation strategies. Here, different multispectral and SAR data are used to detect the incidence of ink disease driven by Phytophthora cinnamomi in forest sites in central Italy, dominated by chestnut and cork oak respectively. Sentinel 1, Sentinel 2, and PlanetScope data, together with ground information, served as input in Random Forests to model healthy and disease classes in the two sites. The results indicate that healthy and symptomatic trees are clearly distinguished, whereas the discrimination among disease classes of different severity (moderate and severe damage) is less accurate. Crown dimension and sampled spectral regions are a critical factors in the selection of the sensor; better results are obtained for the larger chestnut crowns with Sentinel 2 data. In both sites, the red and near infra-red bands from multispectral data resulted well suited to monitor the spread of the ink disease.
Particle-particle and particle-gas processes significantly impact planetary precursors such as dust aggregates and planetesimals. We investigate gas permeability (kappa) in 12 granular samples, mimicking planetesimal dust regoliths. Using parabolic flights, this study assesses how gravitational compression - and lack thereof - influences gas permeation, impacting the equilibrium state of low-gravity objects. Transitioning between micro- and hyper-gravity induces granular sedimentation dynamics, revealing collective dust-grain aerodynamics. Our experiments measure kappa across Knudsen number (Kn) ranges, reflecting transitional flow. Using mass and momentum conservation, we derive kappa and calculate pressure gradients within the granular matrix. Key findings: (i) As confinement pressure increases with gravitational load and mass flow, kappa and average pore space decrease. This implies that a planetesimal's unique dust-compaction history limits subsurface volatile outflows. (ii) The derived pressure gradient enables tensile strength determination for asteroid regolith simulants with cohesion. This offers a unique approach to studying dust-layer properties when suspended in confinement pressures comparable to the equilibrium state on planetesimals surfaces, which will be valuable for modelling their collisional evolution. (iii) We observe a dynamical flow symmetry breaking when granular material moves against the pressure gradient. This occurs even at low Reynolds numbers, suggesting that Stokes numbers for drifting dust aggregates near the Stokes-Epstein transition require a drag force modification based on permeability.
Context. The solar wind impinging on the lunar surface results in the emission of energetic neutral atoms. This particle population is one of the sources of the lunar exosphere. Aims. We present a semi-empirical model to describe the energy spectra of the neutral emitted atoms. Methods. We used data from the Advanced Small Analyzer for Neutrals (ASAN) on board the Yutu-2 rover of the Chang'E-4 mission to calculate high-resolution average energy spectra of the energetic neutral hydrogen flux from the surface. We then constructed a semi-empirical model to describe these spectra. Results. Excellent agreement between the model and the observed energetic neutral hydrogen data was achieved. The model is also suitable for describing heavier neutral species emitted from the surface. Conclusions. A semi-analytical model describing the energy spectrum of energetic neutral atoms emitted from the lunar surface has been developed and validated by data obtained from the lunar surface.
Following spacecraft encounters with comets 67P/C-G and 1P/Halley, it was surprising that O2, expected to be a very minor species in their comas, was observed to outgas at a few percent abundance during their ice sublimation phases. This challenged the direct connection suggested between comets and material in the interstellar medium (ISM), which exhibits a very low O2/H2O gas-phase abundance, leading to a number of papers suggesting novel sources for O2. Since these eccentrically orbiting comets have lost significant amounts of their evaporating surfaces over their lifetimes, the O2 observed must have been stably trapped down to significant depths in these primordial icy bodies. O2 was also seen in the coma by Rosetta, along with other volatiles, long after water ice sublimation began to subside. Here we note that the extensive observations of the icy satellites of Jupiter (Europa, Ganymede, and Callisto) exhibit radiolytic and outgassing processes that provide certain direct parallels to interpretations of recent comet observations. Given that O2 is consistently observed in the atmospheres of icy Jovian satellites, as well as stably trapped as 'bubbles' (Johnson and Jesser, 1997) in their water ice surfaces, their spectral observations can help constrain the environment in which Jupiter-family and Oort cloud comets formed given that the observed O2/H2O abundances at both types of comets and icy moons are nearly identical. Based on the approximate charged particle radiation required to produce the observed steady-state concentrations of O2, we suggest that comets likely formed in a far more energetic environment than the ISM. While grains can be irradiated for longer timescales in the neutral ISM, small grains are expected to erode before significant O2 formation and trapping occurs. Independent of celestial dynamics then, an unknown radiation source, may provide insight to the first population of oxidized water ice grains in the early solar system.
Saturn's large and diffuse E ring is populated by microscopic water ice dust particles, which originate from the Enceladus plume. Cassini's Cosmic Dust Analyser sampled these ice grains, revealing three compositional particle types with different concentrations of salts and organics. Here, we present the analysis of CDA mass spectra from several orbital periods of Cassini, covering the region from interior to Enceladus' orbit to outside the orbit of Rhea, to map the distribution of the different particle types throughout the radial extent of the E ring. This will provide a better understanding of the potential impact of space weathering effects on to these particles, as the ice grains experience an increasing exposure age during their radially outward migration. In this context, we report the discovery of a new ice particle type (Type 5), which produces spectra indicative of very high salt concentrations, and which we suggest to evolve from less-salty Enceladean ice grains by space weathering. The radial compositional profile, now encompassing four particle types, reveals distinct radial variations in the E ring. At the orbital distance of Enceladus our results are in good agreement with earlier compositional analyses of E ring ice grains in the moon's vicinity. With increasing radial distance to Saturn however, our analysis suggests a growing degree of space weathering and considerable changes to the spatial distribution of the particle types. We also find that the proportion of Type 5 grains - peaking near Rhea's orbit - probably reflects particle charging processes in the E ring.
RISTRETTO is a visible high-resolution spectrograph fed by an extreme adaptive optics (AO) system, to be proposed as a visitor instrument on ESO VLT. The main science goal of RISTRETTO is to pioneer the detection and atmospheric characterisation of exoplanets in reflected light, in particular the temperate rocky planet Proxima b. RISTRETTO will be able to measure albedos and detect atmospheric features in a number of exoplanets orbiting nearby stars for the first time. It will do so by combining a high-contrast AO system working at the diffraction limit of the telescope to a high-resolution spectrograph, via a 7-spaxel integral-field unit (IFU) feeding single-mode fibers. Further science cases for RISTRETTO include the study of accreting protoplanets such as PDS70b/c through spectrally-resolved H-alpha emission, and spatially-resolved studies of Solar System objects such as icy moons and the ice giants Uranus and Neptune. The project is in the manufacturing phase for the spectrograph sub-system, and the preliminary design phase for the AO front-end. Specific developments for RISTRETTO include a novel coronagraphic IFU combining a phase-induced amplitude apodizer (PIAA) to a 3D-printed microlens array feeding a bundle of single-mode fibers. It also features an XAO system with a dual wavefront sensor aiming at high robustness and sensitivity, including to pupil fragmentation. RISTRETTO is a pathfinder instrument in view of similar developments at the ELT, in particular the SCAO-IFU mode of ELT-ANDES and the future ELT-PCS instrument.
We present a combined reflectance and thermal radiance model for airless planetary bodies. The Hapke model provides the reflected component. The developed thermal model is the first to consistently use rough fractal surfaces, self-scattering, self-heating, and diskresolved bolometric albedo for entire planets. We validated the model with disk-resolved lunar measurements acquired by the Chinese weather satellite Gaofen-4 at around 3.5-4.1 mu m and measurements of the Diviner lunar radiometer at 8.25 mu m and 25-41 mu m, finding nearly exact agreement. Further, we reprocessed the thermal correction of the global lunar reflectance maps obtained by the Moon Mineralogy Mapper M3 and employed the new model to correct excess thermal radiance. The results confirm the diurnal, latitudinal, and compositional variations of lunar hydration reported in previous and recent studies with other instruments. Further, we compared the model to lunar measurements obtained by the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) on board BepiColombo during a flyby maneuver on April 9, 2020: the measured and the modeled radiance variations across the disk match. Finally, we adapted the thermal model to Mercury for emissivity calibration of upcoming Mercury flyby measurements and in-orbit operation. Although a physical parameter must be invariant under various observation scenarios, the best lunar surface roughness fits vary between different datasets. We critically discuss possible reasons and conclude that anisotropic emissivity modeling has room for improvement and requires attention in future studies.
In this review we discuss all the relevant solar/stellar radiation and plasma parameters and processes that act together in the formation and modification of atmospheres and exospheres that consist of surface-related minerals. Magma ocean degassed silicate atmospheres or thin gaseous envelopes from planetary building blocks, airless bodies in the inner Solar System, and close-in magmatic rocky exoplanets such as CoRot-7b, HD 219134 b and 55 Cnc e are addressed. The depletion and fractionation of elements from planetary embryos, which act as the building blocks for proto-planets are also discussed. In this context the formation processes of the Moon and Mercury are briefly reviewed. The Lunar surface modification since its origin by micrometeoroids, plasma sputtering, plasma impingement as well as chemical surface alteration and the search of particles from the early Earth's atmosphere that were collected by the Moon on its surface are also discussed. Finally, we address important questions on what can be learned from the study of Mercury's environment and its solar wind interaction by MESSENGER and BepiColombo in comparison with the expected observations at exo-Mercurys by future space-observatories such as the JWST or ARIEL and ground-based telescopes and instruments like SPHERE and ESPRESSO on the VLT, and vice versa.
The study of thermal properties of frozen salt solutions representative of ice layers in Jovian moons is crucial to support the JUpiter ICy moons Explorer (JUICE) (ESA) and Europa Clipper (NASA) missions, which will be launched in the upcoming years to make detailed observations of the giant gaseous planet Jupiter and three of its largest moons (Ganymede, Europa, and Callisto), due to the scarcity of experimental measurements. Therefore, we have conducted a set of experiments to measure and study the thermal conductivity of macroscopic frozen salt solutions of particular interest in these regions, including sodium chloride (NaCl), magnesium sulphate (MgSO4), sodium sulphate (Na2SO4), and magnesium chloride (MgCl2). Measurements were performed at atmospheric pressure and temperatures from 0 to -70 degrees C in a climatic chamber. Temperature and calorimetry were measured during the course of the experiments. An interesting side effect of these measurements is that they served to spot phase changes in the frozen salt solutions, even for very low salt concentrations. A small sample of the liquid salt-water solution was set aside for the calorimetry measurements. These experiments and the measurements of thermal conductivity and calorimetry will be valuable to constrain the chemical composition, physical state, and temperature of the icy crusts of Ganymede, Europa, and Callisto.
Saturn's Moon Titan receives volatiles into the top of its atmosphere-including atomic oxygen-sourced from cryovolcanoes on Enceladus. Similar types of atmosphere exchange from one body to another, such as O-2 and O-3 sourced from TRAPPIST-1 d, could be introduced into the upper atmosphere of TRAPPIST-1 e and might be interpreted as biosignatures. We simulate this potential false-positive for life on TRAPPIST-1 e, by applying an external influx of water and oxygen into the top of the atmosphere using a coupled 1-D photochemical-climate model (Atmos), to predict atmospheric composition. In addition, synthetic spectral observations are produced using the Planetary Spectrum Generator for the James Webb Space Telescope, Origins Space Telescope, Habitable Exoplanet Observatory and Large Ultra-violet/Optical/Infrared Surveyor to test the detectability of abiotic-generated O-2 and O-3 in the presence of abiotic and biotic surface fluxes of CH4. We determine that the incoming flux of material needed to trigger detection of abiotic O-2/O-3 by any of these observatories is more than two orders of magnitude (1 x 10(12) molecules/cm(2)/s) above what is physically plausible.