Plant biomass reveals the productivity and stability of a biotic community and is extremely sensitive to climate warming in permafrost regions, such as the Qinghai-Tibetan Plateau (QTP) in China. However, the response of the plant biomass of different functional groups to rising temperatures in such alpine zones remains unclear. Here, infrared radiators were used to simulate year-round warming on the QTP from 2011 to 2018. During the 8-year warming experiment, air temperature increased by 0.16 degrees C, while humidity tended to increase by 0.27 % at 20 cm above the ground. However, the rate of the increase in air temperature declined with an increasing number of years. Soil temperature and moisture increased by 1.28 degrees C and 3.61 %, respectively, on average from 0 to 100 cm below the ground, and the increment of soil moisture tended to rise with increasing depth. At the depths from 0 cm to 20 cm below the ground, soil organic carbon and total phosphorus tended to decrease by 0.79 g/kg and 0.04 g/kg, respectively, while soil total nitrogen tended to increase by 0.04 g/kg. Plant biomass had non-significant responses to warming, but the variation among different plant functional groups was greatest for forbs with the increment being 12.50, 147.97, and 160.47 g/m(2) for plants aboveground, belowground, and total biomass, respectively. The ratios of plant total biomass tended to decrease by 2.29 %, increase by 0.60 %, and increase by 1.70 % for grasses, sedges, and forbs, respectively, so warming greatly decreased the proportion of grasses and increased the proportion of forbs in community. Warming weakened the positive correlation of grass biomass with soil temperature and enhanced the negative correlation of grass biomass with soil N and P content, along with weakening the positive correlation of sedge biomass with soil moisture and N content, while enhancing the negative correlation between sedge biomass and soil temperature. Meanwhile, forb biomass was greatly increased by soil temperature in the effects of warming. In conclusion, the 8-year warming produced negative effects on grasses and sedges by increasing soil temperature and N content and thus promoted the growth of forbs, which might induce a shift toward forbs in this community.
Aim Litter humification is vital for carbon sequestration in terrestrial ecosystems. Probing the litter humification of treeline ecotone will be helpful to understand soil carbon afflux in alpine regions under climate change. Methods Foliar litter of six plant functional groups was chosen in an alpine treeline ecotone of the eastern Tibetan Plateau, and a field litterbag decomposition experiment (669 days) was conducted in an alpine shrubland (AS) and a coniferous forest (CF). Environmental factors, litter quality, humus concentrations (total humus, Huc; humic acid, HAc; and fulvic acid, FAc) and hue coefficient (Delta logK and E4/E6) were measured to explore litter humification processes. Results Litter humification was controlled by both litter stoichiometric traits and local-environment conditions, while stoichiometric traits played a more obvious regulatory role. Significant discrepancies in litter humus were detected among six plant functional groups; more precisely, litter of evergreen conifer and shrubs showed a net accumulation of Huc and FAc during winter, whereas others experienced more mineralization than accumulation. Huc, HAc, and hue coefficient were mainly controlled by cellulose/N, cellulose/P, C/N, lignin/P, lignin/N, etc., yet FAc was more susceptible to local-environment conditions. Meanwhile, Huc, HAc and FAc, as well as humification degree and E4/E6 differed between AS and CF, with faster humification in AS. Conclusion We suggest that litter stoichiometric traits are more responsible for regulating litter humification than environmental conditions in elevational gradients. Furthermore, potential upward shifts by plants may accelerate litter humification in alpine ecosystems.