共检索到 3

Rising temperatures in the Arctic and the expansion of plants to higher latitudes will significantly alter belowground microbial communities and their activity. Given that microbial communities are major producers of greenhouse gases, understanding the magnitude of microbial responses to warming and increased carbon input to Arctic soils is necessary to improve global climate change models. In this study, active layer and permafrost soils from northern Greenland (81 degrees N) were subjected to increased carbon input, in the form of plant litter, and temperature increase, using a combined field and laboratory approach. In the field experiment, unamended or litter-amended soils were transplanted from the permafrost layer to the top soil layer and incubated for one year, whereas in the laboratory experiment active layer and permafrost soils with or without litter amendment were incubated at 4 degrees C or 15 degrees C for six weeks. Soil microbial communities were evaluated using bacterial 16S and fungal ITS amplicon sequencing and respiration was used as a measure of microbial activity. Litter amendment resulted in similar changes in microbial abundances, diversities and structure of microbial communities, in the field and lab experiments. These changes in microbial communities were likely due to a strong increase in fast-growing bacterial copiotrophic taxa and basidiomycete yeasts. Furthermore, respiration was significantly higher with litter input for both active layer and permafrost soil and with both approaches. Temperature alone had only a small effect on microbial communities, with the exception of the field-incubated permafrost soils, where we observed a shift towards oligotrophic taxa, specifically for bacteria. These results demonstrate that alterations in High Arctic mineral soils may result in predictable shifts in the soil microbiome.

期刊论文 2020-12-01 DOI: 10.1016/j.soilbio.2020.108054 ISSN: 0038-0717

Permafrost thaw can affect decomposition rates by changing environmental conditions and litter quality. As permafrost thaws, soils warm and thermokarst (ground subsidence) features form, causing some areas to become wetter while other areas become drier. We used a common substrate to measure how permafrost thaw affects decomposition rates in the surface soil in a natural permafrost thaw gradient and a warming experiment in Healy, Alaska. Permafrost thaw also changes plant community composition. We decomposed 12 plant litters in a common garden to test how changing plant litter inputs would affect decomposition. We combined species' tissue-specific decomposition rates with species and tissue-level estimates of aboveground net primary productivity to calculate community-weighted decomposition constants at both the thaw gradient and warming experiment. Moisture, specifically growing season precipitation and water table depth, was the most significant driver of decomposition. At the gradient, an increase in growing season precipitation from 200 to 300mm increased mass loss of the common substrate by 100%. At the warming experiment, a decrease in the depth to the water table from 30 to 15cm increased mass loss by 100%. At the gradient, community-weighted decomposition was 21% faster in extensive than in minimal thaw, but was similar when moss production was included. Overall, the effect of climate change and permafrost thaw on surface soil decomposition are driven more by precipitation and soil environment than by changes to plant communities. Increasing soil moisture is thereby another mechanism by which permafrost thaw can become a positive feedback to climate change.

期刊论文 2013-07-01 DOI: 10.1002/jgrg.20089 ISSN: 2169-8953

Climatic changes resulting from anthropogenic activities over the passed century are repeatedly reported to alter the functioning of pristine ecosystems worldwide, and especially those in cold biomes. Available literature on the process of plant leaf litter decomposition in the temperate Alpine zone is reviewed here, with emphasis on both direct and indirect effects of climate change phenomena on rates of litter decay. Weighing the impact of biotic and abiotic processes governing litter mass loss, it appears that an immediate intensification of decomposition rates due to temperature rise can be retarded by decreased soil moisture, insufficient snow cover insulation, and shrub expansion in the Alpine zone. This tentative conclusion, remains speculative unless empirically tested, but it has profound implications for understanding the biogeochemical cycling in the Alpine vegetation belt, and its potential role as a buffering mechanism to climate change.

期刊论文 2010-12-01 DOI: 10.1007/s11104-010-0477-0 ISSN: 0032-079X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页