共检索到 3

Warmer winters in Arctic regions may melt insulating snow cover and subject soils to more freeze-thaw cycles. The effect of freeze-thaw cycles on the microbial use of low molecular weight, dissolved organic carbon (LMW-DOC) is poorly understood. In this study, soils from the Arctic heath tundra, Arctic meadow tundra and a temperate grassland were frozen to -7.5 A degrees C and thawed once and three times. Subsequently, the mineralisation of 3 LMW-DOC substrates types (sugars, amino acids and peptides) was measured over an 8-day period and compared to controls which had not been frozen. This allowed the comparison of freeze-thaw effects between Arctic and temperate soil and between different substrates. The results showed that freeze-thaw cycles had no significant effect on C mineralisation in the Arctic tundra soils. In contrast, for the same intensity freeze-thaw cycles, a significant effect on C mineralisation was observed for all substrate types in the temperate soil although the response was substrate specific. Peptide and amino acid mineralisation were similarly affected by FT, whilst glucose had a different response. Further work is required to fully understand microbial use of LMW-DOC after freeze-thaw, yet these results suggest that relatively short freeze-thaw cycles have little effect on microbial use of LMW-DOC in Arctic tundra soils after thaw.

期刊论文 2016-12-01 DOI: 10.1007/s00300-016-1914-1 ISSN: 0722-4060

The McMurdo Dry Valleys of Antarctica are a climate-sensitive ecosystem, where future projected climate warming will increase liquid water availability to release soil biology from physical limitations and alter ecosystem processes. For example, many studies have shown that CO2 flux, an important aspect of the carbon cycle, is controlled by temperature and moisture, which often overwhelm biotic contributions in desert ecosystems. However, these studies used either single-point measurements during peak times of biological activity or diel cycles at individual locations. Here, we present diel cycles of CO2 flux from a range of soil moisture conditions and a variety of locations and habitats to determine how diel cycles of CO2 flux vary across gradients of wet-to-dry soil and whether the water source influences the diel cycle of moist soil. Soil temperature, water content and microbial biomass significantly influenced CO2 flux. Soil temperature explained most of the variation. Soil CO2 flux moderately increased with microbial biomass, demonstrating a sometimes small but significant role of biological fluxes. Our results show that over gradients of soil moisture, both geochemical and biological fluxes contribute to soil CO2 flux, and physical factors must be considered when estimating biological CO2 flux in systems with low microbial biomass.

期刊论文 2015-12-01 DOI: 10.1017/S0954102015000255 ISSN: 0954-1020

The effects of climate change along the climatically sensitive Western Antarctic Peninsula (WAP) on active layer dynamics have just begun to be monitored. But extreme climates and difficult access make borehole installation here challenging. This study was designed to examine the ability of two commonly used, minimally intrusive techniques (the Stefan and Kudryavtsev equations) to predict active layer temperature dynamics and maximum active layer thickness (ALT) on Amsler Island, on the WAP. The ALT in soils and unconsolidated materials was predicted to be between 4.7 and 8.7 m, and between 11.9 and 18.6 m in bedrock, consistent with measurements made in a 14.6 m deep borehole. The thermal model HYDRUS accurately predicted temperature dynamics at several monitored borehole depths. The success of the HYDRUS method indicates that the model can be a useful tool in predicting active layer temperatures and approximating ALTs in regions that are too difficult to install monitoring boreholes. Copyright (c) 2015 John Wiley & Sons, Ltd.

期刊论文 2015-04-01 DOI: 10.1002/ppp.1845 ISSN: 1045-6740
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页