Light-absorbing organic carbon (i.e., brown carbon, BrC) significantly contributes to light absorption and radiative forcing in the atmospheric particles. However, the secondary formation of BrC and optical properties of secondary BrC are poorly understood. In this study, we analyzed and evaluated the light absorption and environmental effects of BrC and secondary BrC from July 1st to 31st, 2022 (summer) and January 20th to February 20th, 2023 (winter) in Chongqing. BrC and secondary BrC light absorption were estimated via a seven- wavelength aethalometer and the statistical approach. The average values of secondary BrC light absorption (Abs(BrC,sec,lambda)) accounted for 46.2-56.5% of Abs(BrC). Abs(BrC,370) and Abs(BrC,sec,370) were significantly higher during winter (26.2 +/- 13.2 and 9.1 +/- 5.2 Mm(-1) respectively) than that during summer (7.2 +/- 4.1 and 5.2 +/- 3.5 Mm(-1) respectively) (p < 0.001), suggesting secondary formation played an essential role in BrC. A diurnal cycle of Abs(BrC,sec,370) was explained by the photobleaching of light-absorbing chromophores under the oxidizing conditions in the daytime, and the formation of chromophores via aqueous reactions with NH(4)(+ )and NO(x )after sunset during winter. PSCF analysis showed that transport of anthropogenic emissions from the northeastern and southeastern areas of Chongqing was the important source of the secondary BrC in PP during winter. During winter, the average values of SFEBrC and SFEBrC,sec were 31.9 and 27.4 W g(-1) lower than that during summer (64.7 and 44.5 W g(-1)), respectively. In contrast, J[NO2] values of SFEBrC and SFEBrC,sec decreased by 23.3% and 8.7% during winter higher than that during summer (19.9% and 5.6%), indicating that BrC and secondary BrC cause substantial radiative effects and atmospheric photochemistry. Overall, this study is helpful in understanding the characterization and secondary formation of BrC and accurately evaluating the environmental effects of BrC in Chongqing.
The light absorption of brown carbon (BrC) makes a significant contribution to aerosol light absorption (Abs) and affects the radiative forcing. In this study, we analyzed and evaluated the light absorption and radiative forcing of BrC samples collected from December 2016 to January 2017 in Chongqing and Chengdu in the Sichuan Basin of Southwest China. Based on a two-component model, we estimated that BrC light absorption at 405 nm was 19.9 +/- 17.1 Mm(-1) and 19.2 = 12.3 Mm(-1) in Chongqing and Chengdu, contributing 19.0 +/- 5.0% and 17.8 3.7% to Abs respectively. Higher Abs(405,BrC), MAE(405.Br)(C), and AAE(405-980) values were observed during the pollution period over the dean period in both cities. The major sources of BrC were biomass burning (BB) and secondary organic aerosol in Chongqing, and coal combustion (CC) and secondary organic aerosol in Chengdu. During the pollution period, aged BrC formed from anthropogenic precursors via its aqueous reactions with NH4+ and NOx had impacts on BrC absorption in both cities. BB led to higher AbS(405,BrC), MAE(405,BrC), and AAE(405-980) values in Chongqing than Chengdu during the pollution period. The fractional contribution of radiation absorbed by BrC relative to BC in the wavelengths of 405-445 nm was 60.2 +/- 17.0% and 64.2 +/- 11.6% in Chongqing and Chengdu, significantly higher than that in the range 01405-980 nm (262 +/- 6.7% and 27.7 +/- 4.6% respectively) (p 0.001). This study is useful for understanding the characterization, sources, and impacts of BrC in the Sichuan Basin. (C) 2020 Elsevier B.V. All rights reserved.