共检索到 1

In the context of global warming, understanding the impact of thaw slump on soil hydrothermal processes and its responses to climate is essential for protecting engineering facilities in cold regions. This study aimed to investigate the effect of thaw slump development on active layer soil. We considered the early thaw slump development in the Tibetan Plateau as research object and conducted long-term monitoring of soil hydrothermal activity in the active layer of various parts of the landslide and the regional meteorology. The results showed that thaw slump development shortened the freezing and thawing time of the active layer, increased the freezing and thawing rates of the shallow soil (10-20 cm), and enhanced the heat exchange between the active layer soil and the atmosphere and the heat transfer between the soils. The heat-exchange efficiency of the active layer, from largest to smallest, was headwall > collapsed area > unaffected area (bottom of the slope) > unaffected area (top of the slope). Furthermore, thaw slump development lowered the water storage of the active layer prof ile and weakened the dynamic response of soil water to precipitation. The events of soil water responses and soil water increments were smaller in the landslide area than in the unaffected area. During a co-precipitation event, the overall soil water storage increment (SWSI) of the profile was significantly smaller in the landslide area than in the unaffected area (P < 0.05), with an SWSI of 2.04 mm in the headwall and 1.77 mm in the collapsed area. In addition, thaw slump development altered the mechanism of soil water transport driven by soil temperature changes, which affected soil water redistribution of profile. The study gives ecohydrology-related research in cold climates a scientific foundation, thereby guiding the construction and maintenance of infrastructure projects.

期刊论文 2025-07-01 DOI: 10.1016/j.enggeo.2025.108183 ISSN: 0013-7952
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页