Ecosystems at the southern edge of the permafrost distribution are highly sensitive to global warming. Changes in soil freeze-thaw cycles can influence vegetation growth in permafrost regions. Extant studies mainly focused on analyzing the differences of vegetation dynamics in different permafrost regions. However, the intrinsic drivers of permafrost degradation on vegetation growth remain elusive yet. Based on the top temperature of permafrost (TTOP) model, we simulated the spatial distribution of permafrost in Northeast China (NEC) from 2001 to 2020. Using the data of the vegetation Net Primary Productivity (NPP), vegetation phenology, climate and permafrost phenology, and analytical methods including partial correlation, multiple linear regression, and path analysis, we explored the response of vegetation growth and phenology to soil freeze-thaw changes and climate change under different degrees of permafrost degradation. Overall, the start date of the growing season (SOS) was very sensitive to the start date of soil thaw (SOT) changes, and multiple regression analyses showed that SOT was the main factor influencing SOS in 41.8% of the NEC region. Climatic factors remain the main factors affecting vegetation NPP in NEC, and the results of partial correlation analysis showed that only 9.7% of the regional duration of soil thaw (DOT) had a strong correlation with vegetation NPP. Therefore, we determined the mechanism responsible for the soil freeze-thaw changes and vegetation growth relationship using the path analysis. The results indicated that there is a potential inhibitory effect of persistent permafrost degradation on vegetation growth. Our findings would contribute to the improvement of process-based models of forest dynamics in the boreal region, which would help to plan sustainable development and conservation strategies in permafrost areas.
Snow cover is an important control element in the Tibetan Plateau (TP) ecosystem; however, the impact of snow cover changes on gross primary productivity (GPP) is largely unknown, particularly under complex geographical conditions. In this study, we investigated the impacts of snow cover changes on different seasonal GPP and their mechanisms in different geographical zones using multisource remote sensing data from 1982 to 2018. Snow cover significantly affected GPP by nearly 15% of the TP region, and snow cover days (SCDs) were the dominant snow cover indicators affecting GPP variations compared with snow water equivalent (SWE) and snow cover end date (SCED). In general, an increase in snow cover leads to a significant increase in GPP in regions with low precipitation and temperature, but limits the accumulation of GPP in humid and warm regions. Furthermore, from the humid to the arid zone, the moisture effect of snow cover (by altering soil moisture) plays an increasingly important role in regulating GPP variations with increasing drought levels. This study elucidates the importance of snow cover in regulating different seasonal GPP variations and significantly improves our insight into the response of vegetation carbon uptake to snow cover changes in the TP.
Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (Reco), gross primary productivity (GPP), and net summer CO2 storage (NEE). Over 7 years Reco, GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, Reco, GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed Reco, GPP, and NEE. However Reco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher Reco in deeply thawed areas during summer months was balanced by GPP. Summer CO2 flux across treatments fit a single quadratic relationship that captured the functional response of CO2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO2 flux: plant growth and water table dynamics. Nonsummer Reco models estimated that the area was an annual CO2 source during all years of observation. Nonsummer CO2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO2 source.
Climate-induced changes in vegetation phenology at northern latitudes are still poorly understood. Continued monitoring and research are therefore needed to improve the understanding of abiotic drivers. Here we used 14 years of time lapse imagery and climate data from high-Arctic Northeast Greenland to assess the seasonal response of a dwarf shrub heath, grassland, and fen, to inter-annual variation in snow-cover, soil moisture, and air and soil temperatures. A late snowmelt and start of growing season is counterbalanced by a fast greenup and a tendency to higher peak greenness values. Snow water equivalents and soil moisture explained up to 77% of growing season duration and senescence phase, highlighting thatwater availability is a prominent driver in the heath site, rather than temperatures. We found a significant advance in the start of spring by 10 days and in the end of fall by 11 days, resulting in an unchanged growing season length. Vegetation greenness, derived from the imagery, was correlated to primary productivity, showing that the imagery holds valuable information on vegetation productivity.
Methane (CH4) emissions from Arctic tundra are an important feedback to global climate. Currently, modelling and predicting CH4 fluxes at broader scales are limited by the challenge of upscaling plot-scale measurements in spatially heterogeneous landscapes, and by uncertainties regarding key controls of CH4 emissions. In this study, CH4 and CO2 fluxes were measured together with a range of environmental variables and detailed vegetation analysis at four sites spanning 300 km latitude from Barrow to Ivotuk (Alaska). We used multiple regression modelling to identify drivers of CH4 flux, and to examine relationships between gross primary productivity (GPP), dissolved organic carbon (DOC) and CH4 fluxes. We found that a highly simplified vegetation classification consisting of just three vegetation types (wet sedge, tussock sedge and other) explained 54% of the variation in CH4 fluxes across the entire transect, performing almost as well as a more complex model including water table, sedge height and soil moisture (explaining 58% of the variation in CH4 fluxes). Substantial CH4 emissions were recorded from tussock sedges in locations even when the water table was lower than 40 cm below the surface, demonstrating the importance of plant-mediated transport. We also found no relationship between instantaneous GPP and CH4 fluxes, suggesting that models should be cautious in assuming a direct relationship between primary production and CH4 emissions. Our findings demonstrate the importance of vegetation as an integrator of processes controlling CH4 emissions in Arctic ecosystems, and provide a simplified framework for upscaling plot scale CH4 flux measurements from Arctic ecosystems.
Climate warming is expected to have a large impact on plant species composition and productivity in northern latitude ecosystems. Warming can affect vegetation communities directly through temperature effects on plant growth and indirectly through alteration of soil nutrient availability. In addition, warming can cause permafrost to thaw and thermokarst (ground subsidence) to develop, which can alter the structure of the ecosystem by altering hydrological patterns within a site. These multiple direct and indirect effects of permafrost thawing are difficult to simulate in experimental approaches that often manipulate only one or two factors. Here, we used a natural gradient approach with three sites to represent stages in the process of permafrost thawing and thermokarst. We found that vascular plant biomass shifted from graminoid-dominated tundra in the least disturbed site to shrub-dominated tundra at the oldest, most subsided site, whereas the intermediate site was co-dominated by both plant functional groups. Vascular plant productivity patterns followed the changes in biomass, whereas nonvascular moss productivity was especially important in the oldest, most subsided site. The coefficient of variation for soil moisture was higher in the oldest, most subsided site suggesting that in addition to more wet microsites, there were other microsites that were drier. Across all sites, graminoids preferred the cold, dry microsites whereas the moss and shrubs were associated with the warm, moist microsites. Total nitrogen contained in green plant biomass differed across sites, suggesting that there were increases in soil nitrogen availability where permafrost had thawed.