Heavy metals are dangerous contaminants that constitute a threat to human health because they persist in soils and are easily transferred into the food chain, causing damage to human health. Among heavy metals, nickel appears to be one of the most dangerous, being responsible for different disorders. Public health protection requires nickel detection in the environment and food chains. Biosensors represent simple, rapid, and sensitive methods for detecting nickel contamination. In this paper, we report on the setting up a whole-cell-based system, in which protoplasts, obtained from Nicotiana tabacum leaves, were used as transducers to detect the presence of heavy metal ions and, in particular, nickel ions. Protoplasts were genetically modified with a plasmid containing the Green Fluorescent Protein reporter gene (GFP) under control of the promoter region of a sunflower gene coding for a small Heat Shock Protein (HSP). Using this device, the presence of heavy metal ions was detected. Thus, the possibility of using this whole-cell system as a novel tool to detect the presence of nickel ions in food matrices was assessed.
Nitraria sibirica Pall is a halophytic shrub growing in desert steppe zones. It exhibits extraordinary adaptability to saline-alkali soil, drought, and sand burial. In this study, the high-affinity K+ transporter NsHKT1 was identified and found to play a key role in salt tolerance in N. sibirica. NsHKT1 was used to improve salt tolerance in a poplar hybrid. The expression characteristics of NsHKT1 were analyzed by transforming Arabidopsis and poplar with the beta-glucuronidase (GUS) gene driven by the NsHKT1 promoter. The results showed that NsHKT1 expression was induced by various abiotic stresses and phytohormones. GUS expression was also detected in the reproductive organs of transgenic Arabidopsis, indicating its function in regulating plant reproductive growth. Transgenic 84 K poplar plants overexpressing NsHKT1 exhibited less damage, higher antioxidant capacity, higher chlorophyll and proline levels, and lower malondialdehyde content compared with non-transgenic plants under salt stress. These results are consistent with the salt tolerance results for transgenic Arabidopsis overexpressing NsHKT1, indicating that NsHKT1 plays a key role in salt tolerance in herbaceous and ligneous plants. Inductively coupled plasma-optical emission spectrometry showed a significantly lower leaf Na+ content in transgenic poplar than in the non-transgenic line, revealing that NsHKT1, as a member of HKT family subclass 1, was highly selective to Na+ and prevented shoot Na+ accumulation. Transcriptome analysis indicated that differentially expressed genes in transgenic poplars under salt stress were associated mainly with the isoflavonoid, cutin, suberine, wax, anthocyanin, flavonoid, and cyanoamino biosynthesis pathways, as well as the MAPK signaling pathway, indicating that NsHKT1 not only regulates ion homeostasis but also influences secondary metabolism and signal transaction in transgenic plants.