目的探讨调Q1064激光联合积雪苷霜软膏治疗黄褐斑的临床效果。方法 120例女性黄褐斑患者,按照随机数字分配方法分为治疗组与对照组,每组60例。对照组患者采用积雪苷霜软膏治疗,治疗组患者采用调Q1064激光联合积雪苷霜软膏治疗。比较两组患者治疗效果、黄褐斑严重程度指数(mMASI)、黄褐斑面积、不良反应发生情况。结果治疗组患者的临床总有效率86.67%显著高于对照组的71.67%,差异具有统计学意义(P<0.05)。治疗组患者的黄褐斑严重程度指数(1.68±0.23)分显著低于对照组的(3.36±0.19)分,差异具有统计学意义(P<0.05)。治疗组患者的黄褐斑面积(2.45±0.57)cm2显著小于对照组的(4.79±0.23)cm2,差异具有统计学意义(P<0.05)。治疗组患者中10例发生不良反应,不良反应发生率为16.7%;对照组患者中3例发生不良反应,不良反应发生率为5.0%。治疗组患者不良反应发生率明显高于对照组,差异具有统计学意义(P<0.05)。结论调Q1064激光联合积雪苷霜软膏对于黄褐斑患者有确切...
目的探讨调Q1064激光联合积雪苷霜软膏治疗黄褐斑的临床效果。方法 120例女性黄褐斑患者,按照随机数字分配方法分为治疗组与对照组,每组60例。对照组患者采用积雪苷霜软膏治疗,治疗组患者采用调Q1064激光联合积雪苷霜软膏治疗。比较两组患者治疗效果、黄褐斑严重程度指数(mMASI)、黄褐斑面积、不良反应发生情况。结果治疗组患者的临床总有效率86.67%显著高于对照组的71.67%,差异具有统计学意义(P<0.05)。治疗组患者的黄褐斑严重程度指数(1.68±0.23)分显著低于对照组的(3.36±0.19)分,差异具有统计学意义(P<0.05)。治疗组患者的黄褐斑面积(2.45±0.57)cm2显著小于对照组的(4.79±0.23)cm2,差异具有统计学意义(P<0.05)。治疗组患者中10例发生不良反应,不良反应发生率为16.7%;对照组患者中3例发生不良反应,不良反应发生率为5.0%。治疗组患者不良反应发生率明显高于对照组,差异具有统计学意义(P<0.05)。结论调Q1064激光联合积雪苷霜软膏对于黄褐斑患者有确切...
目的探讨调Q1064激光联合积雪苷霜软膏治疗黄褐斑的临床效果。方法 120例女性黄褐斑患者,按照随机数字分配方法分为治疗组与对照组,每组60例。对照组患者采用积雪苷霜软膏治疗,治疗组患者采用调Q1064激光联合积雪苷霜软膏治疗。比较两组患者治疗效果、黄褐斑严重程度指数(mMASI)、黄褐斑面积、不良反应发生情况。结果治疗组患者的临床总有效率86.67%显著高于对照组的71.67%,差异具有统计学意义(P<0.05)。治疗组患者的黄褐斑严重程度指数(1.68±0.23)分显著低于对照组的(3.36±0.19)分,差异具有统计学意义(P<0.05)。治疗组患者的黄褐斑面积(2.45±0.57)cm2显著小于对照组的(4.79±0.23)cm2,差异具有统计学意义(P<0.05)。治疗组患者中10例发生不良反应,不良反应发生率为16.7%;对照组患者中3例发生不良反应,不良反应发生率为5.0%。治疗组患者不良反应发生率明显高于对照组,差异具有统计学意义(P<0.05)。结论调Q1064激光联合积雪苷霜软膏对于黄褐斑患者有确切...
Rapid warming in alpine regions exerts important effects on carbon cycling in alpine ecosystem, which are sensitive to environmental changes. So far, little is known about the spatial and temporal variation in carbon budgets and the main influencing factors over different ecosystems. Here, we examined the monthly and annual gross primary production (GPP), net ecosystem CO2 exchange (NEE) and ecosystem respiration (ER) during 2004-2017 in four types of ecosystems (i.e., alpine meadow, steppe, forest and cropland) on the Tibetan Plateau. We explored the relationships between carbon fluxes and environmental factors. The results show that forest, cropland and alpine meadow ecosystems acted as carbon sinks, with NEE values ranging from -21.25 +/- 3.54 to -308.75 +/- 21.65 g C m-2a-1, while alpine steppe and overmature forest ecosystems serve as carbon sources (mean annual NEE: 23.12 +/- 15.88 g C m-2a-1). The temperature sensitivity values (Q10) of ER in the forest (9.39) and alpine steppe (7.47) ecosystems were greater than those in the alpine meadow ecosystems (Q10 = 4.20), indicating that the carbon emissions in the forest and alpine steppe ecosystems were more sensitive to warming. Multiple linear regression analysis indicated that the carbon fluxes (GPP, NEE, ER) of alpine steppe and alpine meadow in the permafrost regions were more sensitive to water forcing (precipitation, soil water content), while in the forest and cropland ecosystems temperature forcing (air and soil temperature) were strong predictors of all the carbon flux indices. Our results showed differential responses of carbon budgets among ecosystems, which could be considered in the future modeling of carbon cycle in alpine regions.
研究多年冻土区不同草地类型及季节生态系统呼吸,对理解青藏高原碳源汇关系及其对气候变化响应具有重要意义。在青藏高原风火山选取高寒草甸和沼泽草甸对生长季和非生长季生态系统呼吸进行观测。结果表明:生态系统呼吸呈明显的日变化和季节变化,高寒草甸日变异系数(0. 30~0. 92)高于沼泽草甸(0. 12~0. 29),高寒草甸非生长季生态系统呼吸白天/晚上比高于生长季,而沼泽草甸季节变化较小;季节变化与5 cm地温变化一致。高寒草甸和沼泽草甸非生长季生态系统呼吸平均速率分别为0. 31和0. 36μmol·m-2·s-1,生长季分别为1. 99和2. 85μmol·m-2·s-1。沼泽草甸生态系统呼吸年排放总量为1 419. 01 gCO2·m-2,显著高于高寒草甸(1 042. 99 gCO2·m-2),其中非生长季高27%,生长季高39%。高寒草甸和沼泽草甸非生长季生态系统呼吸总量分别为268. 13和340. 40...
研究多年冻土区不同草地类型及季节生态系统呼吸,对理解青藏高原碳源汇关系及其对气候变化响应具有重要意义。在青藏高原风火山选取高寒草甸和沼泽草甸对生长季和非生长季生态系统呼吸进行观测。结果表明:生态系统呼吸呈明显的日变化和季节变化,高寒草甸日变异系数(0. 30~0. 92)高于沼泽草甸(0. 12~0. 29),高寒草甸非生长季生态系统呼吸白天/晚上比高于生长季,而沼泽草甸季节变化较小;季节变化与5 cm地温变化一致。高寒草甸和沼泽草甸非生长季生态系统呼吸平均速率分别为0. 31和0. 36μmol·m-2·s-1,生长季分别为1. 99和2. 85μmol·m-2·s-1。沼泽草甸生态系统呼吸年排放总量为1 419. 01 gCO2·m-2,显著高于高寒草甸(1 042. 99 gCO2·m-2),其中非生长季高27%,生长季高39%。高寒草甸和沼泽草甸非生长季生态系统呼吸总量分别为268. 13和340. 40...
研究多年冻土区不同草地类型及季节生态系统呼吸,对理解青藏高原碳源汇关系及其对气候变化响应具有重要意义。在青藏高原风火山选取高寒草甸和沼泽草甸对生长季和非生长季生态系统呼吸进行观测。结果表明:生态系统呼吸呈明显的日变化和季节变化,高寒草甸日变异系数(0. 30~0. 92)高于沼泽草甸(0. 12~0. 29),高寒草甸非生长季生态系统呼吸白天/晚上比高于生长季,而沼泽草甸季节变化较小;季节变化与5 cm地温变化一致。高寒草甸和沼泽草甸非生长季生态系统呼吸平均速率分别为0. 31和0. 36μmol·m-2·s-1,生长季分别为1. 99和2. 85μmol·m-2·s-1。沼泽草甸生态系统呼吸年排放总量为1 419. 01 gCO2·m-2,显著高于高寒草甸(1 042. 99 gCO2·m-2),其中非生长季高27%,生长季高39%。高寒草甸和沼泽草甸非生长季生态系统呼吸总量分别为268. 13和340. 40...
研究多年冻土区不同草地类型及季节生态系统呼吸,对理解青藏高原碳源汇关系及其对气候变化响应具有重要意义。在青藏高原风火山选取高寒草甸和沼泽草甸对生长季和非生长季生态系统呼吸进行观测。结果表明:生态系统呼吸呈明显的日变化和季节变化,高寒草甸日变异系数(0. 30~0. 92)高于沼泽草甸(0. 12~0. 29),高寒草甸非生长季生态系统呼吸白天/晚上比高于生长季,而沼泽草甸季节变化较小;季节变化与5 cm地温变化一致。高寒草甸和沼泽草甸非生长季生态系统呼吸平均速率分别为0. 31和0. 36μmol·m-2·s-1,生长季分别为1. 99和2. 85μmol·m-2·s-1。沼泽草甸生态系统呼吸年排放总量为1 419. 01 gCO2·m-2,显著高于高寒草甸(1 042. 99 gCO2·m-2),其中非生长季高27%,生长季高39%。高寒草甸和沼泽草甸非生长季生态系统呼吸总量分别为268. 13和340. 40...
研究多年冻土区不同草地类型及季节生态系统呼吸,对理解青藏高原碳源汇关系及其对气候变化响应具有重要意义。在青藏高原风火山选取高寒草甸和沼泽草甸对生长季和非生长季生态系统呼吸进行观测。结果表明:生态系统呼吸呈明显的日变化和季节变化,高寒草甸日变异系数(0. 30~0. 92)高于沼泽草甸(0. 12~0. 29),高寒草甸非生长季生态系统呼吸白天/晚上比高于生长季,而沼泽草甸季节变化较小;季节变化与5 cm地温变化一致。高寒草甸和沼泽草甸非生长季生态系统呼吸平均速率分别为0. 31和0. 36μmol·m-2·s-1,生长季分别为1. 99和2. 85μmol·m-2·s-1。沼泽草甸生态系统呼吸年排放总量为1 419. 01 gCO2·m-2,显著高于高寒草甸(1 042. 99 gCO2·m-2),其中非生长季高27%,生长季高39%。高寒草甸和沼泽草甸非生长季生态系统呼吸总量分别为268. 13和340. 40...
研究青藏高原多年冻土区高寒草甸土壤CO2通量有助于准确估算该区域的土壤CO2排放,对认识高原土壤碳循环及其对全球气候变化的响应具有重要意义.利用静态箱-气相色谱法和LI-8100土壤CO2通量自动测量系统对疏勒河上游多年冻土区高寒草甸土壤CO2通量进行了定期观测,结合气象和土壤环境因子进行了分析.结果表明:整个观测期高寒草甸土壤表现为CO2的源,土壤CO2通量的日变化范围为2.52~532.81 mg·m-2·h-1.土壤CO2年排放总量为1 429.88 g·m-2,年均通量为163.23 mg·m-2·h-1;其中,CO2通量与空气温度和相对湿度、活动层表层2 cm、10 cm、20 cm、30 cm土壤温度、含水量和盐分均显著相关.2 cm土壤温度、空气温度和总辐射、空气温度、2 cm土壤盐分分别是影响活动层表层2 cm土壤完全融化期、冻结过程期、完全冻结期、融化过程期土壤CO2通量的最重要因子.在完全融化期、冻结过程期和整个观测期,拟合最佳的温度因子变化分别能够解释土壤CO2通量变化的72.0%、82.0%和38.0%,对应的Q10值分别为1.93、6.62和2.09.冻融期(...