共检索到 2

The stability of arctic permafrost and the carbon it contains are currently threatened by a rapidly warming climate. Burial Lake, situated in northwestern arctic Alaska, is underlain by continuous permafrost and has a uniquely rich set of paleoclimate proxy data that comprise a 40-ka record of climate and environmental change extending well into Marine Isotope Stage (MIS) 3. Here, we examine the relationship between erosion, subsurface hydrology, and primary productivity from the Burial Lake sediments to improve our understanding of the links between climate, hydrology, sediment transport, and carbon mobility. The record is developed with radiocarbon (14C) age-offsets from two independent methods used to date the lake sediments: 1) 14 C measurements on paired bulk sediment and plant macrofossils from the same stratigraphic layer of lake sediment and 2) ramped pyrolysis- oxidation (RPO) 14 C analysis that separates fractions of organic carbon (OC) from a single bulk sediment sample based on thermochemical differences through continuous heating. As lakes capture and archive OC transported from the watershed, changes in the amount and relative age of permafrost-derived OC mobilized during past climatic variations can be documented by examining how age-offsets change over time. The Burial Lake sediment revealed higher age-offsets during the cold Last Glacial Maximum (LGM; 29-17 ka) than the comparatively warmer post-glacial ( 17 ka-present) and the MIS 3 interstadial ( 40-29 ka) periods. The relatively warm, wet climate of the post-glacial period promoted both terrestrial and aquatic productivity, resulting in increased OC deposition, and it likely favored transport via subsurface flow of dissolved OC (DOC) sourced from soils. This resulted in a greater flux of contemporary OC relative to ancient OC into the lake sediment, lowering the average age offset to 2 ka. In contrast, the low-productivity conditions of the LGM resulted in slow soil accumulation rates, leaving ancient OC in a shallower position in the soil profile and allowing it to be easily eroded in the form of particulate OC (POC). Although the amount of total OC deposited in the lakebed during the LGM is small relative to post-glacial deposition, the majority is ancient, which leads to a relatively high average age offset of 9 ka. Finally, climate and environmental conditions of the MIS 3 interstadial were intermediate between those of the post-glacial and the LGM. As with post-glacial sediments, a relatively large amount of OC is present; however, the vast majority of it is ancient (more similar to the LGM), and it produces an average age offset of 6 ka. The Burial Lake radiocarbon record demonstrates the complexities of the thaw and mobilization of permafrost OC in arctic Alaska, including the balance between production, transport, deposition, remobilization, and preservation. This record highlights the importance of considering factors that both enhance and inhibit erosion (i.e. vegetation cover, lake level, precipitation) and the mechanisms of OC transport (i.e. subsurface flow or erosion) in predictions of future permafrost response to changes in climate.

2025-01-01 Web of Science

Glacial landforms formed by multiple glaciations are well-preserved in the valleys around Karlik Mountain in the easternmost Tianshan range, Central Asia. These landforms are direct imprints of palaeoglaciers and represent important archives of past climatic and environmental conditions. Dating these landforms contributes to understanding the spatiotemporal variations of past glaciers and provides key information for reconstructing the palaeoclimate and palaeoenvironment in Central Asia. In this study, thirty-two boulder and bedrock samples were collected from two glaciated valleys on the southern slope of Karlik Mountain for terrestrial in situ cosmogenic nuclides (TCN)10Be surface exposure dating. Based on the geomorphic relationships and dating results, the innermost MS1 moraine complex was deposited during the Little Ice Age (LIA); the MS2 moraine complex was formed during the Late -glacial; the MS3 moraine complex was deposited during the global Last Glacial Maximum (LGMG); the MS4 moraine complex, which is the largest moraine complex, is marine oxygen isotope stage (MIS) 4 in ages; and the MS5 moraine complex, which is only preserved at the interfluve ridges, has a similar age to MS4. The age of MS4 demonstrates that the largest local last glacial maximum (LGML) occurred during the early part of the last glacial cycle rather than during the LGMG. The MS4 and MS5 glacial complexes imply that a large ice cap with outlet valley glaciers developed on the whole of Karlik Mountain during MIS 4. These ages, combined with previous landform mapping and dating on the northern slope of the mountain, show that glacial advances since MIS 4 in this mountainous area were restricted to the valleys, rather than large ice cap scale, which is consistent with moraine records in the other valleys across the Tianshan range. The pattern and nearly synchronous timing of palaeoglacier fluctuations during the last glaciation in arid Central Asia imply that the main determinant for glacier fluctuations in this region has been changes in precipitation brought by the westerlies during periods of low temperature.(c) 2023 Elsevier Ltd. All rights reserved.

2023-09
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页