共检索到 2

Permafrost carbon could produce a positive climate feedback. Until now, the ecosystem carbon budgets in the permafrost regions remain uncertain. Moreover, the frequently used models have some limitations especially regarding to the freeze-thaw process. Herein, we improved the IBIS model by incorporating an unfrozen water scheme and by specifying the parameters to estimate the present and future carbon budget of different land cover types (desert steppe, steppe, meadow, and wet meadow) in the permafrost regions. Incorporating an unfrozen water scheme reduced the mean errors in the soil temperature and soil water content by 25.2%, and the specifying leaf area parameters reduced the errors in the net primary productivity (NPP) by 79.9%. Further, the simulation results showed that steppes are carbon sources (39.16 gC/m(2)/a) and the meadows are carbon sinks (-63.42 gC/m(2)/a ). Under the climate warming scenarios of RCP 2.6, RCP 6.0, and RCP 8.5, the desert steppe and alpine steppe would assimilated more carbon, while the meadow and wet meadow were projected to shift from carbon sinks to carbon sources in 2071-2100, implying that the land cover type plays an important role in simulating the source/sink effects of permafrost ecosystem carbon in the IBIS model. The results highlight the importance of unfrozen water to the soil hydrothermal regime and specific leaf area for the growth of alpine vegetation, and present new insights on the difference of the responses of various permafrost ecosystems to climate warming.

期刊论文 2024-12-01 DOI: http://dx.doi.org/10.1016/j.catena.2021.105168 ISSN: 0341-8162

Despite the importance of the Yellow River to China, climate change for the middle reaches of the Yellow River Basin (YRB) has been investigated far less than for other regions. This work focuses on future changes in mean and extreme climate of the YRB for the near-term (2021-2040), mid-term (2041-2060), and far-term (2081-2100) future, and assesses these with respect to the reference period (1986-2005) using the latest REgional MOdel (REMO) simulations, driven by three global climate models (GCMs) and assuming historical and future [Representative Concentration Pathway (RCP) 2.6 and 8.5] forcing scenarios, over the CORDEX East Asia domain at 0.22 degrees horizontal resolution. The results show that REMO reproduces the historical mean climate state and selected extreme climate indices reasonably well, although some cold and wet biases exist. Increases in mean temperature are strongest for the far-term in winter, with an average increase of 5.6 degrees C under RCP 8.5. As expected, the future temperatures of the warmest day (TXx) and coldest night (TNn) increase and the number of frost days (FD) declines considerably. Changes to mean temperature and FD depend on elevation, which could be explained by the snow-albedo feedback. A substantial increase in precipitation (34%) occurs in winter under RCP 8.5 for the far-term. Interannual variability in precipitation is projected to increase, indicating a future climate with more extreme events compared to that of today. Future daily precipitation intensity and maximum 5-day precipitation would increase and the number of consecutive dry days would decline under RCP 8.5. The results highlight that pronounced warming at high altitudes and more intense rainfall could cause increased future flood risk in the YRB, if a high GHG emission pathway is realized.

期刊论文 2022-04-01 DOI: http://dx.doi.org/10.1007/s00382-020-05617-4 ISSN: 0930-7575
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页