The morphology of sheep wool applied as organic fertilizer biodegraded in the soil was examined. The investigations were conducted in natural conditions for unwashed waste wool, which was rejected during sorting and then chopped into short segments and wool pellets. Different types of wool were mixed with soil and buried in experimental plots. The wool samples were periodically taken and analyzed for one year using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). During examinations, the changes in the fibers' morphology were observed. It was stated that cut wool and pellet are mechanically damaged, which significantly accelerates wool biodegradation and quickly destroys the whole fiber structure. On the contrary, for undamaged fibers biodegradation occurs slowly, layer by layer, in a predictable sequence. This finding has practical implications for the use of wool as an organic fertilizer, suggesting that the method of preparation can influence its biodegradation rate. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(SEM)(sic)(sic)(sic)(sic)(sic)X(sic)(sic)(sic)(sic)(EDS)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
Most gravel roads leading to rural areas in Ghana have soft spot sections as a result of weak lateritic subgrade layers. This study presents a laboratory investigation on a typical weak lateritic subgrade soil reinforced with non-woven fibers. The objective was to investigate the strength characteristic of the soil reinforced with non-woven fibers. The California Bearing Ratio and Unconfined Compressive Strength tests were conducted by placing the fibers in single layer and also in multiple layers. The results showed an improved strength of the soil from a CBR value of 7%. The CBR recorded maximum values of 30% and 21% for coconut and palm fibers inclusion at a placement depth of H/5 from the compacted surface. Multiple fiber layer application at depths of H/5 & 2 h/5 yielded CBR values of 38% and 31% for coconut and palm fibers respectively. The Giroud and Noiray design method and the Indian Road Congress design method recorded reduction in the thickness of pavement of 56% to 63% for coconut fiber inclusion and 45% to 55% for palm fiber inclusion. Two-way statistical analysis of variance (ANOVA) showed significant effect of depth of fiber placement and fiber type on the geotechnical characteristics considered. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic),CBR(sic)(sic)7%(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)H/5(sic)(sic)(sic)(sic)(sic)(sic),CBR(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)30%(sic)21%. (sic)H/5(sic)2H/5(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)CBR(sic)(sic)(sic)(sic)38%(sic)31%. Giroud&Noiray(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)56%(sic)63%,(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)45%(sic)55%. (sic)(sic)(sic)(sic)(sic)(sic)(ANOVA)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
Taurine (TAU) has recently been found to have an impactful role in regulating plant responses under abiotic stresses. This study presented the comparative effects of TAU seed priming and foliar spray application on chickpea plants exposed to hexavalent chromium. Taurine priming and foliar applications (1.6 and 2.4 mM) notably modulated morpho-physiological and biochemical responses of plants under Cr(VI) stress. Plants subjected to 25 mg kg-1 soil Cr in the form of potassium dichromate (K2Cr2O7) displayed a significant reduction in growth, chlorophyll, and uptake of essential nutrients (N, K, P, and Ca). Cr(VI) toxicity also resulted in a notable increase in osmolyte accumulation, lipid peroxidation, relative membrane permeability, ROS generation, antioxidant enzyme activities, antioxidant compounds, endogenous Cr levels, and aerial Cr translocation. Taurine abridged lipoxygenase activity to diminish lipid peroxidation owing to the overproduction of ROS initiated by a higher Cr content. The acquisition and assimilation of essential nutrients were augmented by the TAU-related decrease in leaf and root Cr levels. Consequently, TAU enhanced growth by mitigating oxidative damage, reducing Cr content in the aerial parts, and reinforcing the activities of antioxidant enzymes. Compared to foliar spray, TAU seed priming has demonstrated superior efficacy in mitigating Cr phytotoxicity in plants.
Flash floods are often responsible for deaths and damage to infrastructure. The objective of this work is to create a data-driven model to understand how predisposing factors influence the spatial variation of the triggering factor (rainfall intensity) in the case of flash floods in the continental area of Portugal. Flash floods occurrences were extracted from the DISASTER database. We extracted the accumulated precipitation from the Copernicus database by considering two days of duration. The analysed predisposing factors for flooding were extracted considering the whole basin where each occurrence is located. These factors include the basin area, the predominant lithology, drainage density, and the mean or median values of elevation, slope, stream power index (SPI), topographic wetness index (TWI), roughness, and four soil properties. The Random Forest algorithm was used to build the models and obtained mean absolute percentage error (MAPE) around 19%, an acceptable value for the objectives of the work. The median of SPI, mean elevation and the area of the basin are the top three most relevant predisposing factors interpreted by the model for defining the rainfall input for flash flooding in mainland Portugal.
The root-knot nematode, Meloidogyne javanica, is one of the most damaging plant-parasitic nematodes, affecting chickpea and causing substantial yield losses worldwide. The damage potential and population dynamics of this nematode in chickpea in Ethiopia have yet to be investigated. In this study, six chickpea cultivars were tested using 12 ranges of initial population densities (Pi) of M. javanica second-stage juveniles (J2): 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64 and 128 J2 (g dry soil)-1 in a controlled glasshouse pot experiment. The Seinhorst yield loss and population dynamics models were fitted to describe population development and the effect on different measured growth variables. The tolerance limit (TTFW) for total fresh weight ranged from 0.05 to 1.22 J2 (g dry soil)-1, with corresponding yield losses ranging from 31 to 64%. The minimum yield for seed weight (mSW) ranged from 0.29 to 0.61, with estimated yield losses of 71 and 39%. The 'Haberu' and 'Geletu' cultivars were considered good hosts, with maximum population densities (M) of 16.27 and 5.64 J2 (g dry soil)-1 and maximum multiplication rate (a) values of 6.25 and 9.23, respectively. All other cultivars are moderate hosts for M. javanica; therefore, it is crucial to initiate chickpea-breeding strategies to manage the tropical root-knot nematode M. javanica in Ethiopia.
Amidst global scarcity, preventing pipeline failures in water distribution systems is crucial for maintaining a clean supply while conserving water resources. Numerous studies have modelled water pipeline deterioration; however, existing literature does not correctly understand the failure time prediction for individual water pipelines. Existing time-to-failure prediction models rely on available data, failing to provide insight into factors affecting a pipeline's remaining age until a break or leak occurs. The study systematically reviews factors influencing time-to-failure, prioritizes them using a magnitude-based fuzzy analytical hierarchy process, and compares results with expert opinion using an in-person Delphi survey. The final pipe-related prioritized failure factors include pipe geometry, material type, operating pressure, pipe age, failure history, pipeline installation, internal pressure, earth and traffic loads. The prioritized environment-related factors include soil properties, water quality, extreme weather events, temperature, and precipitation. Overall, this prioritization can assist practitioners and researchers in selecting features for time-based deterioration modelling. Effective time-to-failure deterioration modelling of water pipelines can create a more sustainable water infrastructure management protocol, enhancing decision-making for repair and rehabilitation. Such a system can significantly reduce non-revenue water and mitigate the socio-environmental impacts of pipeline ageing and damage.
Ensuring the accuracy of free-field inversion is crucial in determining seismic excitation for soil-structure interaction (SSI) systems. Due to the spherical and cylindrical diffusion properties of body waves and surface waves, the near-fault zone presents distinct free-field responses compared to the far-fault zone. Consequently, existing far-fault free-field inversion techniques are insufficient for providing accurate seismic excitation for SSI systems within the near-fault zone. To address this limitation, a tailored near-fault free-field inversion method based on a multi-objective optimization algorithm is proposed in this study. The proposed method establishes an inversion framework for both spherical body waves and cylindrical surface waves and then transforms the overdetermined problem in inversion process into an optimization problem. Within the multi-objective optimization model, objective functions are formulated by minimizing the three-component waveform differences between the observation point and the delayed reference point. Additionally, constraint conditions are determined based on the attenuation property of propagating seismic waves. The accuracy of the proposed method is then verified through near-fault wave motion characteristics and validated against real downhole recordings. Finally, the application of the proposed method is investigated, with emphasis on examining the impulsive property of underground motions and analyzing the seismic responses of SSI systems. The results show that the proposed method refines the theoretical framework of near-fault inversion and accurately restores the free-field characteristics, particularly the impulsive features of near-fault motions, thereby providing reliable excitation for seismic response assessments of SSI systems.
Internal erosion induces alterations in the initial microstructure of soils, simultaneously affecting physical, hydraulic, and mechanical properties. The initial soil composition plays a crucial role in governing the initiation and progression of seepage-induced suffusion. This study employs the controlled variable method to develop granular soil models with varying particle size ratios, initial fine particle contents, and coarse particle shapes. Seepage suffusion simulations coupled with microstructural analyses are conducted using the CFD-DEM approach. Results demonstrate that particle size ratio, fine particle content, and coarse particle shape exert distinct influences on cumulative erosion mass, fine particle distribution, contact fabric, and mechanical redundancy at both macroscopic and microscopic scales. This numerical investigation advances the fundamental understanding of internal erosion mechanisms and informs the development of micro-mechanical constitutive models. Furthermore, for binary granular media composed of coarse and fine particles, careful control of the particle size ratio and fine content is recommended when utilizing gap-graded soils in embankment and dam construction to improve structural resilience and resistance to internal erosion.
This study presents a novel micromorphic continuum model for sand-gravel mixtures with low gravel contents, which explicitly accounts for the influences of the particle size distribution, gravel content, and fabric anisotropy. This model is rigorously formulated based on the principle of macro-microscopic energy conservation and Hamilton's variational principle, incorporating a systematic analysis of the kinematics of coarse and fine particles as well as macro-microscopic deformation differentials. Dispersion equations for plane waves are derived to elucidate wave propagation mechanisms. The results demonstrate that the model effectively captures normal dispersion characteristics and size-dependent effects on wave propagation in these mixtures. In long-wavelength regimes, wave velocities are governed by macroscopic properties, whereas decreasing wavelengths induce interparticle scattering and multiple reflections, attenuating velocities or inhibiting waves, especially when wavelengths approach interparticle spacing. The particle size, porosity, and stiffness ratio primarily influence the macroscopic average stiffness, exhibiting consistent effects on dispersion characteristics across all wavelength domains. In contrast, the particle size ratio and gravel content simultaneously influence both macroscopic mechanical properties and microstructural organization, leading to opposing trends across different wavelength ranges. Model validation against experiments confirms its exceptional predictive ability regarding wave propagation characteristics, including relationships between lowpass threshold frequency, porosity, wave velocity, and coarse particle content. This study provides a theoretical foundation for understanding wave propagation in sand-gravel mixtures and their engineering applications.
The effective dynamic viscosity of a soil-rock mixture (S-RM) serves as a essential parameter for simulating flowlike landslides in the context of fluid kinematics. Accurate measurement of this viscosity is significant for understanding the remote sustainability and rheological properties of landslide hazards. This study presents a method for determining dynamic viscosity, incorporating experimental measurements and numerical inversion. The experiment involves monitoring the movement of S-RMs with varying water content and rock block concentration, followed by the calculation of centroid displacements and velocities using digital image processing. The power-law model, combined with computational fluid dynamics, effectively captures the flow-like behavior of the S-RM. A grid search method is then employed to determine the optimal parameters by comparing the predicted centroid displacement with experimental results. A series of flume experiments were conducted, resulting in the observation of spatial mass distribution and centroid displacement variations over time during soil-rock movement. The dynamic viscosity model of the S-RM is derived from the experimental data. This dynamic viscosity model was then employed to simulate an additional flume experiment, with the results demonstrating excellent agreement between the simulated and experimental centroid displacements. Sensitivity analysis of the dynamic viscosity model indicates a dependence on shear rate and demonstrates a high sensitivity to water content and rock block concentration, following a parabolic trend within the measured range. This research contributes to the fields of geotechnical engineering and landslide risk assessment, offering a practical and effective method of measuring the dynamic viscosity of S-RM. Future research could explore additional factors influencing rheological behavior and extend the applicability of the proposed method to different geological environments.