The efficacy and environmental effects of using metal-organic frameworks (MOFs) for the remediation of arsenic (As)-contaminated soil, a significant global problem, remain unclear. This study evaluated MIL-88A(Fe) and MIL101(Fe) coupled with ramie (Boehmeria nivea L.) for As-contaminated soil remediation. A soil incubation experiment revealed that 10,000 mg kg-1 MIL-88A(Fe) and MIL-101(Fe) reduced As bioavailability by 77.1 % and 65.0 %, respectively, and increased residual As fractions by 8 % and 7 % through Fe-As co-precipitation and adsorption. Divergent environmental effects emerged, which were probably due to differences in the framework structures and organic ligands: MIL-88A(Fe) improved soil urease activity and bacterial diversity, whereas MIL101(Fe) induced acidification (decreasing soil pH by 25 %) and salinity stress (elevating soil electrical conductivity (EC) by 946 %). A pot experiment showed that 1000 mg kg-1 MOFs enhanced ramie biomass via As immobilization, whereas 5000 mg kg-1 MIL-101(Fe) suppressed growth because exposure to the MOF caused root damage. The MOFs enriched Pseudomonas (As-oxidizing) and suppressed Dokdonella (pathogenic), enhancing plant resilience. Notably, 100 mg kg-1 MIL-101(Fe) increased As translocation to stems (14.8 %) and leaves (27.6 %). Hydroponic analyses showed that 50-200 mg L-1 MIL-101(Fe) mitigated As-induced chlorophyll degradation (elevating Soil and plant analyzer development (SPAD) by 12.8 %-28.3 %), whereas 500 and 1000 mg L-1 induced oxidative stress (reducing SPAD by 4.2 %-10.7 %). This study provides valuable insights into using Fe-based MOFs in soil remediation and highlights their beneficial and harmful effects.
All-cellulose composites (ACC) are reinforced and impregnated entirely with cellulose. In this study, ramie (Boehmeria nivea) was used as reinforcement materials because of their excellent mechanical properties and then combined with luffa (Luffa cylindrica) cellulose as the matrix to fabricate ACC with the conventional impregnation method (CIM). The NaOH/urea solution was selected to dissolve luffa cellulose. Epichlorohydrin (ECH) was added to the cellulose solution as a crosslinker for hydrogel formation. Scanning electron microscope (SEM) was conducted to evaluate the interaction between ramie fibers and luffa matrices. The mechanical properties, density, and wettability were evaluated by varying the fiber mass fraction. The results showed that ACC from ramie-luffa had a tensile strength of 35.13 MPa at a high fiber fraction, a density under 1.3 g cm-3, and an average contact angle of up to 92.1 degrees. Soil-burial testing was conducted to approach the degradability of the ACC. The results demonstrated that the degradation of ACC reached 64.41 % after 28 days of burial in the soil. These findings suggest that ACC from ramie and luffa holds significant potential as a sustainable and environmentally friendly composite.