共检索到 5

In the northern Da Xing'anling Mountains in Northeast China on the southern margin of the Eastern Asia permafrost body, the ground thermal state and boreal ecological environment are sensitive to climate change and human activities. Since the 1980s, the Hola Basin here has been continuously and extensively developed. In particular, open pits and later backfilling in strip coal mining alters land-atmospheric hydrothermal exchanges in permafrost regions, leading to serious damages to the permafrost environment and boreal forest. After mining, pits need to be backfilled timely and properly for hydrothermal recovery of Xing'an permafrost and the boreal ecological environment. In this study, based on the comparative analysis of monitored ground temperatures in backfilled and undisturbed areas, influencing factors of thermal recovery after backfilling were analyzed through numerical simulations. Results show that the thermal recovery of permafrost in the backfilled area is closely related to temperature, depth, material, and soil moisture content of backfill. The warmer, finer, and thicker the backfill soils, the longer the permafrost recovery. Thermal recovery of permafrost also depends on the moisture content of backfill; the shortest recovery occurs at 15-25% in the backfilled soil moisture content. Based on numerical simulations and combined with enlightenments from features of the ecosystem-protected Xing'an permafrost in Northeast China, a composite configuration of organic soil, crush-rock layer, and proper re-vegetation measures is advised. Based on prudent regulation of heat transfer modes, this composite backfilling method can effectively cool the backfilled ground and can even possibly offset the climate warming.

期刊论文 2022-01-25 DOI: 10.3389/feart.2022.806022

Recently, forests in the Tianshan Mountains have shown a marked decline in growth and an increased mortality rate because of the more frequent and severe effects of extreme drought, which threatens the ecosystem services they provide. To achieve forest conservation and sustainable development benefits, it is crucial to understand the post-drought recovery trajectory of tree growth and its driving factors. In this study, we quantified the growth recovery performance of dominant tree species in the Tianshan Mountains after extreme drought events and determined the influences of climate factors on forest growth resilience using tree-ring proxy data. The results showed that post-drought moisture conditions may determine the post-drought growth recovery of trees. The post-drought growth for 1997 was higher than that for 1974, which may be attributed to the subsequent period of 1997 experiencing very high precipitation, whereas the year following the 1974 drought was dry (Stan-dardized Precipitation Evapotranspiration Index < 0). Because of the more favorable climate conditions in the post-drought period, the observed relationship between resistance and recovery in 1997 showed a closer fit to the hypothetical line of full resilience which sets resilience to a constant value of 1, allowing trees to recover fully at any given value of resistance. Trees showed lower mean values of the tree growth recovery index (RC) and average recovery rate (ARR) and higher mean values of total growth reduction (TGR) and recovery period (RE) for the drought event in 1974 than that in 1997. We distinguished the relative influence of temperature and precipitation on different drought phases using Boosted Regression Tree (BRT) model. The results showed that the climate conditions during the drought year and subsequent precipitation variation were most influential variables for tree growth recovery. Specifically, post-drought precipitation explained up to 20 % of the variance in RC, TGR, RE, and ARR. These findings deepen our understanding of the impacts of prolonged drought on tree growth, which could aid in developing forest management and conservation strategies to respond to extreme drought.

期刊论文 2021-04-01 DOI: http://dx.doi.org/10.1016/j.ecolind.2023.110275 ISSN: 1470-160X

Drought-related forest growth declines are observed globally in main forest types, especially with repeatedly hot droughts. Therefore, quantifying forest resilience and identifying the factors driving resilience in response to extreme drought with the consideration of atmospheric CO2 fertilization is crucial for the accurate assessment of forest dynamics under current climate change, particularly for the widespread and climate-sensitive spruce forests in the arid Tianshan Mountains, China. Here, we explored the growth response of Schrenk spruce (Picea schrenkiana) to six extreme drought events since 1900, and investigated how tree resilience in pure stands is related to local drought intensity, cambial age (CA), and intrinsic water-use efficiency (iWUE). Specifically, we found that spruce trees had a mean resistance (Rt) value of less than 1, with iWUE contributing less to Rt variation. The results are in agreement with the drought-induced limitations on tree growth in response to increasing CO2, in spite of rising iWUE trends. However, increased iWUE has significant and positive impacts on the recovery (17%) and resilience (15%) of trees, suggesting that increased iWUE enhances the restoration of Schrenk spruce growth after extreme drought events. The growth resilience indices of Schrenk spruce showed that juvenile and adult trees exhibit different strategies to mitigate the drought influences. This study indicated that tree age, climate conditions, and variation in iWUE should be considered simultaneously in drought resilience evaluations to assess forest dynamics objectively in relation to climate change (i.e., drought) and propose appropriate forest management strategies.

期刊论文 2020-11-02 DOI: http://dx.doi.org/10.1007/s11738-020-03158-1 ISSN: 0137-5881

Wildfires could have a strong impact on tundra environment by combusting surface vegetation and soil organic matter. For surface vegetation, many years are required to recover to pre-fire level. In this paper, by using C-band (VV/HV polarization) and L-band (HH polarization) synthetic aperture radar (SAR) images acquired before and after fire from 2002 to 2016, we investigated vegetation change affected by the Anaktuvuk River Fire in Arctic tundra environment. Compared to the unburned areas, C- and L-band SAR backscatter coefficients increased by up to 5.5 and 4.4 dB in the severely burned areas after the fire. Then past 5 years following the fire, the C-band SAR backscatter differences decreased to pre-fire level between the burned and unburned areas, suggesting that vegetation coverage in burned sites had recovered to the unburned level. This duration is longer than the 3-year recovery suggested by optical-based Normalized Difference Vegetation Index (NDVI) observations. While for the L-band SAR backscatter after 10-year recovery, about 2 dB higher was still found in the severely burned area, compared to the unburned area. The increased roughness of the surface is probably the reason for such sustained differences. Our analysis implies that long records of space-borne SAR backscatter can monitor post-fire vegetation recovery in Arctic tundra environment and complement optical observations.

期刊论文 2019-10-01 DOI: 10.3390/rs11192230

Forest fires have significantly impacted the permafrost environment, and many research programs looking at this have been undertaken at higher latitudes. However, their impacts have not yet been systematically studied and evaluated in the northern part of northeast China at mid-latitudes. This study simultaneously measured ecological and geocryological changes at various sites in the boreal forest at different stages after forest fires (chronosequence approach) in the northern Da Xing'anling (Hinggan) Mountains, Northeast China. We obtained results through field investigations, monitoring and observations, remote sensing interpretations, and laboratory tests. The results show that forest fires have resulted in a decreased Normalized Difference Vegetation Index (NDVI) and soil moisture contents in the active layer, increased active layer thickness (ALT) and ground temperatures, and the release of a large amount of C and N from the soils in the active layer and at shallow depths of permafrost. NDVI and species biodiversity have gradually increased in the years since forest fires. However, the vegetation has not fully recovered to the climax community structures and functions of the boreal forest ecosystems. For example, ground temperatures, ALT, and soil C and N contents have been slowly recovering in the 30years after the forest fires, but they have not yet been restored to pre-fire levels. This study provides important scientific bases for assessment of the impacts of forest fires on the boreal forest ecosystems in permafrost regions, environmental restoration and management, and changes in the carbon stock of soils at shallow (<3m) depths in the Da Xingan'ling Mountains in northeast China.

期刊论文 2019-07-01 DOI: 10.1002/ppp.2001 ISSN: 1045-6740
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页