共检索到 4

Soil organic matter (SOM) stability in Arctic soils is a key factor influencing carbon sequestration and greenhouse gas emissions, particularly in the context of climate change. Despite numerous studies on carbon stocks in the Arctic, a significant knowledge gap remains regarding the mechanisms of SOM stabilization and their impact on the quantity and quality of SOM across different tundra vegetation types. The main aim of this study was to determine SOM characteristics in surface horizons of permafrost-affected soils covered with different tundra vegetation types (pioneer tundra, arctic meadow, moss tundra, and heath tundra) in the central part of Spitsbergen (Svalbard). Physical fractionation was used to separate SOM into POM (particulate organic matter) and MAOM (mineral-associated organic matter) fractions, while particle-size fractionation was applied to evaluate SOM distribution and composition in sand, silt, and clay fractions. The results indicate that in topsoils under heath tundra POM fractions dominate the carbon and nitrogen pools, whereas in pioneer tundra topsoils, the majority of the carbon and nitrogen are stored in MAOM fractions. Moreover, a substantial proportion of SOM is occluded within macro-and microaggregates. Furthermore, the results obtained from FTIR analysis revealed substantial differences in the chemical properties of individual soil fractions, both concerning the degree of occlusion in aggregates and across particle size fractions. This study provides clear evidence that tundra vegetation types significantly influence both the spatial distribution and chemical composition of SOM in the topsoils of central Spitsbergen.

期刊论文 2026-03-01 DOI: 10.1016/j.catena.2025.109772 ISSN: 0341-8162

RISTRETTO is a visible high-resolution spectrograph fed by an extreme adaptive optics (AO) system, to be proposed as a visitor instrument on ESO VLT. The main science goal of RISTRETTO is to pioneer the detection and atmospheric characterisation of exoplanets in reflected light, in particular the temperate rocky planet Proxima b. RISTRETTO will be able to measure albedos and detect atmospheric features in a number of exoplanets orbiting nearby stars for the first time. It will do so by combining a high-contrast AO system working at the diffraction limit of the telescope to a high-resolution spectrograph, via a 7-spaxel integral-field unit (IFU) feeding single-mode fibers. Further science cases for RISTRETTO include the study of accreting protoplanets such as PDS70b/c through spectrally-resolved H-alpha emission, and spatially-resolved studies of Solar System objects such as icy moons and the ice giants Uranus and Neptune. The project is in the manufacturing phase for the spectrograph sub-system, and the preliminary design phase for the AO front-end. Specific developments for RISTRETTO include a novel coronagraphic IFU combining a phase-induced amplitude apodizer (PIAA) to a 3D-printed microlens array feeding a bundle of single-mode fibers. It also features an XAO system with a dual wavefront sensor aiming at high robustness and sensitivity, including to pupil fragmentation. RISTRETTO is a pathfinder instrument in view of similar developments at the ELT, in particular the SCAO-IFU mode of ELT-ANDES and the future ELT-PCS instrument.

期刊论文 2024-01-01 DOI: 10.1117/12.3020142 ISSN: 0277-786X

The Tacquet Formation (TF) was first identified in geologic mapping of southern Mare Serenitatis as a distinct low albedo region split by the linear Rimae Menelaus rilles. A distinct western dome, split by a linear rille and less distinct eastern dome (the Menelaus domes) are also present within the TF. Previous Earth-based radar analyses showed that the TF has a lower circular polarization ratio consistent with a pyroclastic mantle. In this study, compositional and spectroscopic parameters were derived from Moon Mineralogy Mapper (M-3) data. Lunar Reconnaissance Orbiter Camera Wide Angle Camera (LROC WAC) and SELENE Kaguya Multiband Imager (MI) multispectral data were also utilized. FeO derived from MI data for the TF and Menelaus domes was elevated at levels consistent with pyroclastic glasses. While not diagnostic of pyroclastics, TiO2 derived from LROC WAC data over the TF and Menelaus domes was also elevated relative to the background materials. Analysis of 1 and 2 mu m band parameters also show the TF and Menelaus domes as being distinct with a band center moderately longer than 1 mu m and 2 mu m band center shorter than the surroundings, characteristics consistent with pyroclastic glass and/or increased ilmenite. M-3 data thermally corrected via two different thermal correction approaches indicate a moderately deeper band in the 3 mu m region indicative of OH and/or H2O, a characteristic that is also potentially associated with pyroclastic deposits. These compositional findings are consistent with the Earth-based radar data suggesting that the TF is a pyroclastic mantle and potentially represents a previously unrecognized sub-class of pyroclastic deposits associated with lunar volcanic domes.

期刊论文 2022-08-01 DOI: 10.1016/j.icarus.2022.115021 ISSN: 0019-1035

Reflectance spectroscopy of Apollo lunar soil samples curated in an air- and water-free, sealed environment since recovery and return to Earth has been carried out under water-, oxygen-, CO2- and organic-controlled conditions. Spectra of these pristine samples contain features near 3 mu m wavelength similar to those observed from the lunar surface by the Chandrayaan-1 Moon Mineralogy Mapper (M-3), Cassini Visual and Infrared Mapping Spectrometer (VIMS), and Deep Impact Extrasolar Planet Observation and Deep Impact Extended Investigation (EPDXI) High-Resolution Instrument (HRI) instruments. Spectral feature characteristics and inferred OH/H2O concentrations are within the range of those observed by spacecraft instruments. These findings confirm that the 3 mu m feature from the lunar surface results from the presence of hydration in the form of bound OH and H2O. Implantation of solar wind H+ appears to be the most plausible formation mechanism for most of the observed lunar OH and H2O. (C) 2014 Elsevier B.V. All rights reserved.

期刊论文 2014-03-15 DOI: 10.1016/j.epsl.2014.01.007 ISSN: 0012-821X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页