Pollutant emissions in China have significantly decreased over the past decade and are expected to continue declining in the future. Aerosols, as important pollutants and short-lived climate forcing agents, have significant but currently unclear climate impacts in East Asia as their concentrations decrease until mid-century. Here, we employ a well-developed regional climate model RegCM4 combined with future pollutant emission inventories, which are more representative of China to investigate changes in the concentrations and climate effects of major anthropogenic aerosols in East Asia under six different emission reduction scenarios (1.5 degrees C goals, Neutral-goals, 2 degrees C -goals, NDC-goals, Current-goals, and Baseline). By the 2060s, aerosol surface concentrations under these scenarios are projected to decrease by 89%, 87%, 84%, 73%, 65%, and 21%, respectively, compared with those in 2010-2020. Aerosol climate effect changes are associated with its loadings but not in a linear manner. The average effective radiative forcing at the surface in East Asia induced by aerosol-radiation-cloud interactions will diminish by 24% +/- 13% by the 2030s and 35% +/- 13% by the 2060s. These alternations caused by aerosol reductions lead to increases in near-surface temperatures and precipitations. Specifically, aerosol-induced temperature and precipitation responses in East Asia are estimated to change by -78% to -20% and -69% to 77%, respectively, under goals with different emission scenarios in the 2060s compared to 2010-2020. Therefore, the significant climate effects resulting from substantial reductions in anthropogenic aerosols need to be fully considered in the pathway toward carbon neutrality.
2025-01-28 Web of ScienceIn the context of China's dual carbon goal, emissions of air pollutants are expected to significantly decrease in the future. Thus, the direct climate effects of black carbon (BC) aerosols in East Asia are investigated under this goal using an updated regional climate and chemistry model. The simulated annual average BC concentration over East Asia is approximately 1.29 mu g/m(3) in the last decade. Compared to those in 2010-2020, both the BC column burden and instantaneous direct radiative forcing in East Asia decrease by more than 55% and 80%, respectively, in the carbon peak year (2030s) and the carbon neutrality year (2060s). Conversely, the BC effective radiative forcing (ERF) and regional climate responses to BC exhibit substantial nonlinearity to emission reduction, possibly resulting from different adjustments of thermal-dynamic fields and clouds from BC-radiation interactions. The regional mean BC ERF at the tropopause over East Asia is approximately +1.11 W/m(2) in 2010-2020 while negative in the 2060s. BC-radiation interactions in the present-day impose a significant annual mean cooling of -0.2 to -0.5 K in central China but warming +0.3 K in the Tibetan Plateau. As China's BC emissions decline, surface temperature responses show a mixed picture compared to 2010-2020, with more cooling in eastern China and Tibet of -0.2 to -0.3 K in the 2030s, but more warming in central China of approximately +0.3 K by the 2060s. The Indian BC might play a more important role in East Asian climate with reduction of BC emissions in China.
2024-07-28 Web of ScienceBlack carbon (BC) aerosol is a significant, short-lived climate forcing agent. To further understand the effects of BCs on the regional climate, the warming effects of BCs from residential, industrial, power and transportation emissions are investigated in Asian regions during summer using the state-of-the-art regional climate model RegCM4. BC emissions from these four sectors have very different rates and variations. Residential and industrial BCs account for approximately 85% of total BC emissions, while power BCs account for only approximately 0.19% in Asian regions during summer. An investigation suggests that both the BC aerosol optical depth (AOD) and direct radiative forcing (DRF) are highly dependent on emissions, while the climate effects show substantial nonlinearity to emissions. The total BCs AOD and clear-sky top of the atmosphere DRF averaged over East Asia (100-130 degrees E, 20-50 degrees N) are 0.02 and +1.34 W/m(2), respectively, during summer. Each sector's BC emissions may result in a warming effect over the region, leading to an enhanced summer monsoon circulation and a subsequent local decrease (e.g., northeast China) or increase (e.g., south China) in rainfall in China and its surrounding regions. The near surface air temperature increased by 0.2 K, and the precipitation decreased by approximately 0.01 mm/day in east China due to the total BC emissions. The regional responses to the BC warming effects are highly nonlinear to the emissions, which may be linked to the influences of the perturbed atmospheric circulations and climate feedback. The nonuniformity of the spatial distribution of BC emissions may also have significant influences on climate responses, especially in south and east China. The results of this study could aid us in better understanding BC effects under different emission conditions and provide a scientific reference for developing a better BC reduction strategy over Asian regions.
2019-11-01 Web of ScienceGround reaching solar radiation flux was simulated using a 1-dimensional radiative transfer (SBDART) and a 3-dimensional regional climate (RegCM 4.4) model and their seasonality against simultaneous surface measurements carried out using a CNR4 net Radiometer over a sub-Himalayan foothill site of south-east Asia was assessed for the period from March 2013-January 2015. The model simulated incoming fluxes showed a very good correlation with the measured values with correlation coefficient R-2 similar to 0.97. The mean bias errors between these two varied from -40 W m(-2) to +7 W m(-2) with an overestimation of 2-3% by SBDART and an underestimation of 2-9% by RegCM. Collocated measurements of the optical parameters of aerosols indicated a reduction in atmospheric transmission path by similar to 20% due to aerosol load in the atmosphere when compared with the aerosol free atmospheric condition. Estimation of aerosol radiative forcing efficiency (ARFE) indicated that the presence of black carbon (BC, 10-15%) led to a surface dimming by -26.14 W m(-2) tau(-1) and a potential atmospheric forcing of + 43.04 W m(-2) tau(-1). BC alone is responsible for > 70% influence with a major role in building up of forcing efficiency of + 55.69 W m(-2) tau(-1) (composite) in the atmosphere. On the other hand, the scattering due to aerosols enhance the outgoing radiation at the top of the atmosphere (ARFE(TOA) similar to -12.60 W m(-2) omega(-1)), the absence of which would have resulted in ARFE(TOA) of similar to+16.91 W m(-2) tau(-1) (due to BC alone). As a result, similar to 3/4 of the radiation absorption in the atmosphere is ascribed to the presence of BC. This translated to an atmospheric heating rate of similar to 1.0 K day(-1), with similar to 0.3 K day(-1) heating over the elevated regions (2-4 km) of the atmosphere, especially during pre-monsoon season. Comparison of the satellite (MODIS) derived and ground based estimates of surface albedo showed seasonal difference in their magnitudes (R-2 similar to 0.98 during retreating monsoon and winter; similar to 0.65 during pre-monsoon and monsoon), indicating that the reliability of the satellite data for aerosol radiative forcing estimation is more during the retreating and winter seasons.
2018-05-15 Web of Science