共检索到 2

The climate change is significantly changing the hydro-thermal state of active layer at Qinghai-Tibet Plateau (QTP), which endangers permafrost environment. The degradation of permafrost would damage the linear engineering in cold regions; furthermore, the alternation of soil hydro-thermal state in the area of rugged terrain would lead to geo-hazards and then threaten the safety of local people. Global warming is widely accepted as a big threat to the ecological environment of arctic, subarctic and alpine regions, while the changing trend of precipitation around the world is still in dispute. Furthermore, the role of precipitation accompanied with global warming is unknown. Hence, in this study, the localized monitoring data from Beiluhe permafrost monitoring station at QTP, including atmospheric and soil hydro-thermal data, were utilized for further processing and comparative analysis. Firstly, the changing trend of precipitation here was investigated through the atmospheric data from 2003 to 2013. Thereafter, the hydro-thermal change of active layer was analyzed combined with precipitation events during this period. However, the raining pattern in QTP is characterized with continuity, short duration and small amount, basically referring to thawed season. The hydro-thermal change affected by corresponding raining event could be influenced by temporally nearby event in timescale. To differentiate the effect, the characteristic precipitation event (CPE) was selected through an elaborate algorithm. Subsequently, the hydro-thermal changes of active layer were reanalyzed in response to CPEs. Representative outcomes were chosen for the specific analysis under the influence from CPEs. Hence, under the circumstance of global warming, the effect from precipitation on the hydro-thermal properties of active layer was also obtained, and the possible harmful consequence induced by that was also discussed.

期刊论文 2021-01-01 DOI: 10.1007/s11069-020-04401-1 ISSN: 0921-030X

South Asian emissions of fossil fuel SO2 and black carbon increased approximate to 6-fold since 1930, resulting in large atmospheric concentrations of black carbon and other aerosols. This period also witnessed strong negative trends of surface solar radiation, surface evaporation, and summer monsoon rainfall. These changes over India were accompanied by an increase in atmospheric stability and a decrease in sea surface temperature gradients in the Northern Indian Ocean. We conducted an ensemble of coupled ocean-atmosphere simulations from 1930 to 2000 to understand the role of atmospheric brown clouds in the observed trends. The simulations adopt the aerosol radiative forcing from the Indian Ocean experiment observations and also account for global increases in greenhouse gases and sulfate aerosols. The simulated decreases in surface solar radiation, changes in surface and atmospheric temperatures over land and sea, and decreases in monsoon rainfall are similar to the observed trends. We also show that greenhouse gases and sulfates, by themselves, do not account for the magnitude or even the sign in many instances, of the observed trends. Thus, our simulations suggest that absorbing aerosols in atmospheric brown clouds may have played a major role in the observed regional climate and hydrological cycle changes and have masked as much as 50% of the surface warming due to the global increase in greenhouse gases. The simulations also raise the possibility that, if current trends in emissions continue, the subcontinent may experience a doubling of the drought frequency in the coming decades.

期刊论文 2005-04-12 DOI: 10.1073/pnas.0500656102 ISSN: 0027-8424
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页