Light-absorbing carbonaceous aerosols, comprising black carbon (BC) and brown carbon (BrC), significantly influence air quality and radiative forcing. Unlike traditional approaches that use a fixed value of absorption & Aring;ngstrom exponent (AAE), this study investigated the absorption and optical properties of carbonaceous aerosols in Beijing for both local emission and regional transport events during a wintertime pollution event by using improved AAE results that employs wavelength-dependent AAE (WDA). By calculating the difference of BC AAE at different wavelengths using Mie theory and comparing the calculated results to actual measurements from an Aethalometer (AE31), a more accurate absorption coefficient of BrC can be derived. Through the analysis of air mass sources, local emission was found dominated the pollution events during this study, accounting for 81 % of all cases, while regional transport played a minor role. Carbonaceous aerosols exhibited a continuous increasing trend during midday, which may be attributed to the re-entrainment of nighttime-accumulated carbonaceous aerosols to the surface during the early planetary boundary layer (PBL) development phase, as the mixed layer rises, combined with the variation of PBL and anthropogenic activity. At night, variations in the PBL height, in addition to anthropogenic activities, effectively contributed to surface aerosol concentrations, leading to peak surface aerosol values during local pollution episodes. The diurnal variation of AAE470/880 exhibited a decreasing trend, with a total decrease of approximately 12 %. Furthermore, the BrC fraction showed a constant diurnal variation, suggesting that the declining AAE470/880 was primarily influenced by BC, possibly due to enhanced traffic contributions.
Regional atmospheric circulation patterns affect haze pollution and they change in the warming climate. Here, the characteristics of atmospheric circulation anomalies conducive to extreme haze occurrence in China and their historical and future trends are examined based on surface observations, reanalysis data, aerosol source tagging technique, and multimodel intercomparison results. December 2016 and 2017 are identified as the worst months of haze pollution over northern and southern China, featuring weakened and strengthened prevailing winds, respectively. During 1980-2019, the atmospheric pattern similar to December 2016 decreased, while that similar to 2017 increased, suggesting that severe haze formation mechanism in eastern China has been shifting from causes of local accumulation to regional transport processes. In the future, climate change under the sustainable and intermediate development scenarios are the ideal paths to reduce haze in China, while high social vulnerability and radiative forcing would cause a severe damage to the environment.