共检索到 2

Black carbon (BC) over the Tibetan Plateau (TP), both in the air and deposited on the surface of snow and ice, has been shown to accelerate the retreat of mountain glaciers. Previous study indicated that South Asian anthropogenic emissions primarily contributed to atmospheric loading of BC over the TP, it is essential to further identify the major sector in South Asia and provide guidance for potential mitigation strategies. In this study, the regional atmospheric chemistry model WRF-Chem was run for an entire year. The results suggested that residential BC emissions from South Asia contributed the largest (25.8% in summer and 44.8% in winter) to BC concentrations over the TP compared to other anthropogenic emission sectors in the region. Furthermore, significant seasonal variability existed in the transport process of residential BC from South Asia to the TP. The South Asia monsoon during summer and the mountain-valley wind system during spring could transport South Asian residential BC across the Himalayas to the TP. However, the higher transportation flux along 30 degrees N indicated that the transport was mainly influenced by westerly winds, implying that residential emissions from northern India were the critical source of BC aerosols over the TP. A further assessment of emission control strategies suggested that reducing emissions from South Asian residential sources can effectively reduce BC concentrations over the TP, which may potentially alleviate the TP's accelerating glacier melting. (C) 2019 Elsevier B.V. All rights reserved.

期刊论文 2023-01-10 DOI: http://dx.doi.org/10.1016/j.scitotenv.2019.135923 ISSN: 0048-9697

Particle-phase air pollution is a leading risk factor for premature death globally and impacts climate by scattering or absorbing radiation and changing cloud properties. Within the Beijing-Tianjin-Hebei region of China, where there are severe air quality problems, several municipalities have begun implementing a coal-to-electricity program that bans residential coal and provides subsidies for electricity and electric-powered heat pumps. We used GEOS-Chem to evaluate two complete residential coal-to-electricity transitions-a Beijing-off scenario and Beijing-Tianjin-Hebei-off scenario-each relative to a base case. We estimate that within China, the ambient fine particulate matter (PM2.5) reductions in the Beijing-off scenario could lead to 1,900 (95% CI: 1,200-2,700) premature deaths avoided annually, while the Beijing-Tianjin-Hebei-off scenario could lead to 13,700 (95% CI: 8,900-19,600) premature deaths avoided annually. Additionally, we estimate that the residential-coal-ban scenarios will result in a positive top-of-the-atmosphere aerosol direct radiative effect (DRE) (model domain average: Beijing-off: 0.023 W m(-2); Beijing-Tianjin-Hebei-off: 0.30 W m(-2)) and a negligible cloud-albedo aerosol indirect effect (AIE) (Beijing-off: 0.0001 W m(-2); Beijing-Tianjin-Hebei-off: 0.0027 W m(-2)). To evaluate the uncertainty of the radiative effects, we calculated the DRE under four black-carbon mixing-state assumptions and both the DRE and AIE assuming three different black-carbon-to-organic-aerosol (BC:OA) ratios for residential-coal emissions. Although the magnitude of our radiative forcing estimates varied across sensitivity cases, the domain average remained positive. When only considering the aerosol-related effects of the aforementioned coal-ban scenarios, we predict substantial health benefits, but do not anticipate a climate co-benefit, because removing aerosol emissions leads to a warming tendency. However, if the coal-to-electricity program results in less net greenhouse gas emissions due to the replacement heaters, the policy may be able to achieve health and climate co-benefits.

期刊论文 2020-11-01 DOI: 10.4209/aaqr.2019.11.0565 ISSN: 1680-8584
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页