共检索到 55

Water-induced disintegration is a critical issue in soil stabilization. In this study, soda residue (SR) and fly ash (FA) were mixed to improve the properties of high liquid limit clay (HLC), forming soda residue-fly ash stabilized clay (SRFSC), with cement and/or lime for further stabilization. The mix proportions of the SRFSC were optimized by the orthogonal method, using the compaction, unconfined compressive strength, shear, and disintegration tests. Meanwhile, microscopic tests were performed to reveal the possible mechanical mechanisms. The results showed that the SR and FA content are the primary determinants influencing the mechanical properties of SRFSC. When the base proportion is 70 % SR + 20 % FA + 10 % HLC, the strength is highest (2.45 MPa). At this proportion, the specimen with no cementitious material exhibits the best water disintegration resistance (WDR), reaching 107 min. Adding cement and lime can significantly enhance the WDR of the SRFSC, from complete disintegration at 0.28 min to remaining intact after soaking for 28 days. During field application, the cementitious materials content can be adjusted according to the actual conditions. The superior mechanical properties and WDR of SRFSC are mainly due to the good gradation and dense microstructure. The soda residue can provide abundant Ca2+ to enhance both the mechanical properties and WDR of SRFSC.

期刊论文 2025-08-01 DOI: 10.1016/j.jobe.2025.112676

Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need is constantly growing. Biochar, the porous carbon-based lightweight product, often ends up as a soil fertilizer. However, it can be applied in other industrial sectors, e.g., in plastics production or in modifying cementitious materials intended for construction needs. This work dealt with the application of small amounts of softwood-based biochar up to 2.0 wt.% on hydration kinetics and a wide range of physical and mechanical properties, such as water transport characteristics and flexural and compressive strengths of modified cement pastes. In the comparison with reference specimens, the biochar incorporation into cement pastes brought benefits like the reduction of open porosity, improvement of strength properties, and decreased capillary water absorption of 7-day and 28-day-cured cement pastes. Moreover, biochar-dosed cement pastes showed an increase in heat evolution during the hydration process, accompanied by higher consumption of clinker minerals. Considering all examined characteristics, the optimal dosage of softwood-derived biochar of 1.0 wt.% of Portland cement can be recommended.

期刊论文 2025-06-04 DOI: 10.3390/buildings15111949

The production of agricultural residues causes environmental pollution, especially in regions with intensive horticultural production. The solution is to maximise the use of residues, applying the 'zero waste' model and using them to develop construction materials. Natural fibres used to reinforce materials have environmental and economic benefits due to their low cost. This research presents an innovative characterisation using an inverted-plate optical microscope, a high-resolution scanning electron microscope (HRSEM) and a 3D X-ray microscope. A physico-mechanical and chemical characterisation of horticultural fibres was also conducted. The fibres analysed were those produced in the highest quantities, including those from tomatoes, peppers, zucchinis, cucumbers and aubergines. The viability of these natural fibres for use as reinforcements in biocomposites was investigated. The analysis centred on studying the microstructure, porosity, chemical composition, tensile strength, water absorption and environmental degradation of the natural fibres. The results showed a porosity ranging from 47.44% to 61.18%, which contributes to the lightness of the materials. Cucumber stems have a higher tensile strength than the other stems, with an average value of 19.83 MPa. The SEM analysis showed a similar chemical composition of the scanned fibres. Finally, the life cycle of the materials made from horticultural residue was analysed, and negative GWP (global warming potential) CO2eq values were obtained for two of the proposed materials, such as stabilised soil reinforced with agricultural fibres and insulation panels made of agricultural fibres.

期刊论文 2025-05-05 DOI: 10.3390/app15095121

Grain protein content (GPC) often increases with nitrogen (N) fertilizer; however, low GPC is preferred for soft wheat (Triticum aestivum L.). The combined effects of decreasing N and increasing seed rate (SR) on soft wheat quality, economic benefits (Eb), apparent N recovery (ARN), and soil nitrate-N residual (SNR) are poorly understood. Field experiments were conducted with three SRs (SR135, SR180, and SR225) and two N levels (N235 and N290) in 2017-2018, and three N levels (N290, N235, and N180) with a control (N0) in 2018-19. The results showed that storage proteins, GMP, HMW-GS, and Zeleny sedimentation value significantly decreased with lower N levels and increased with higher SR. At the same SR, the significant difference for the parameters mentioned were greater at a low N rate than at a high rate. Furthermore, grain yield (GY), Eb, ARN, and SNR were significantly affected by N and SR. Increasing SR from 135 to 180 resulted in an average Eb increase of 13.32%, while increasing from 180 to 225 led to a decline of 3.75%. Compared to N290, N235 decreased SNR and GPC by 27.5% and 4.7%, respectively, but increased ARN by 18.3%. The highest Eb (13,914 CNY) and ARN value (57.5%) were observed with the treatment (N235SR180). Additionally, optimal combination for maximizing GY (90%), Eb (87.8%), and ARN (97%) was found at N235SR198, according to regression and spatial analysis. This study confirmed that optimizing N and SR can improve soft wheat quality and resource use efficiency without decreasing yield.

期刊论文 2025-05-01 DOI: 10.1016/j.jcs.2025.104151 ISSN: 0733-5210

Atrazine (ATR), a widely used herbicide, poses significant environmental and health risks due to its high solubility and adsorption in soil. ATR exposure can lead to nephrotoxicity in humans and animals. Curcumin (Cur), an active compound in Curcuma species, is renowned for its antioxidant and anti-inflammatory properties, with potential to mitigate chronic disease risks. We hypothesized that the addition of Cur could alleviate renal impairment associated with ATR exposure and carried out experiments using mice as subjects. This study investigates whether Cur can attenuate ATR-induced nephrotoxicity in mice by modulating mitophagy and apoptotic pathways. Our findings illustrate that consumption with Cur attenuates nephrotoxicity induced by ATR, as evidenced by lowered serum concentrations of uric acid (UA), blood urea nitrogen (BUN), and creatinine (CRE), established biomarkers of renal injury. Moreover, Curcumin enhances renal antioxidant defense mechanisms in ATR-exposed mice, as indicated by elevated levels of total antioxidant capacity (T-AOC), catalase (CAT), and glutathione peroxidase (GSH-Px), alongside reduced levels of malondialdehyde (MDA). Histopathological and electron microscopy analyses further corroborate these findings, showing reduced organelle damage, particularly mitochondrial ridge breakage and vacuolization, and increased autophagic lysosomes. Cur further enhances PINK1/Parkin-mediated autophagy, as evidenced by elevated levels of PINK1, Parkin, LC3BII, and P62 compared to ATR-treated mice. Moreover, Cur mitigates the mitochondrial apoptotic pathway, indicated by the down-regulation of apoptosis-related genes (Cytochrome C (Cyto-C), Caspase3, Caspase9) and the proapoptotic marker (Bax), along with the up-regulation of the anti-apoptotic marker (Bcl-2) at both transcriptional and translational levels compared to ATR-treated mice. In summary, Cur demonstrates nephroprotective properties against ATR-induced injury through the enhancement of mitochondrial autophagy and display of antiapoptotic actions, underscoring its curative potency as a treatment for nephrotoxicity caused by ATR.

期刊论文 2025-04-15 DOI: 10.1016/j.ecoenv.2025.118118 ISSN: 0147-6513

The feasibility of lightweight construction materials by incorporating a waste that is difficult to recycle, based on waste from intensive agriculture: vegetable fibers and propylene, is presented. This innovative material consists of a mixture of Alhambra Formation soil (Granada, SE of Spain) reinforced with vegetable fibres from tomato, pepper, zucchini, cucumber, aubergine and polypropylene fibres. The fibres were used in the mixture at a ratio of 2.5%, 5.0%, 7.5% and 10.0%. These values were then compared with control test samples that did not contain any residues. The compatibility of the fibres with the soil of the Alhambra Formation was then evaluated in terms of its physical-mechanical properties, specifically in relation to uniaxial compression and longitudinal deformation. Due to the highly hygroscopic nature of plant fibres, their absorption was measured and the techniques of presoaking and non-soaking the fibres before mixing them with the soil of the Alhambra Formation were investigated. The results of the unconfined compression tests show that the increase in fibre volume leads to a significant decrease in compressive strength. The highest compressive strength from a residue ratio >= 7.5 % was achieved with the cucumber residue and the non-pre-soaking technique. This residue ratio reached an average value of 1.82 MPa, which is 4% lower than the reference specimen without additives. Notwithstanding the decline in mechanical strength with elevated residue quantities, the resulting Alhambra Formation soil composite blended with a 7.5 % cucumber ratio may be regarded as a prospective candidate for implementation using the Projected Earth System technique.

期刊论文 2025-04-04 DOI: 10.1016/j.conbuildmat.2025.140538 ISSN: 0950-0618

BackgroundThis review provides an overview of how antibiotic residues are found in the environment and affect livestock, thereby shedding light on the physiological mechanisms of their toxicity.ObjectiveWe aimed to emphasize the need for improved antibiotic management in agricultural practices to mitigate environmental contamination and reduce risks to livestock. Understanding the mechanisms by which antibiotic residues exert toxic effects is critical to the development of sustainable solutions.ResultsAntibiotic residues in the environment are a growing concern because of their widespread use in livestock farming and persistence in ecosystems. This review examines the pathways by which antibiotics enter soil, water, and sediments, primarily through manure application, wastewater discharge, and direct excretion by animals. Once in the environment, these residues affect soil quality, water systems, and animal health, posing risks, such as toxicity, disruption of microbial communities, and physiological harm to livestock. Persistent antibiotics, including fluoroquinolones and tetracyclines, accumulate in animal tissues and alter metabolism, leading to adverse effects, such as joint damage and impaired growth. In addition, these residues can degrade into toxic metabolites, further affecting livestock health and the environment.ConclusionCollectively, these findings suggest that future research may be required to prioritize strategies to mitigate environmental contamination by antibiotics and explore alternatives to reduce exposure in livestock production.

期刊论文 2025-04-01 DOI: 10.1007/s13273-024-00504-z ISSN: 1738-642X

The current work gives a snapshot of pesticide residuals, their exposure levels, and the associated potential risks of some organophosphates in Coimbatore district, Tamil Nadu. The study has significant viewpoints on food safety and pesticide management. The pesticide residual analysis was carried out on two commonly used vegetables, tomato and brinjal. The QuEChERS method is used to extract pesticides and GC-MS/SIM analyses were used to quantify pesticide residues. Among the various samples tested, organophosphorus pesticides, such as Phorate Sulfoxide, Chlorpyrifos, and Malathion, were detected in some samples. In the majority of brinjal samples analyzed, no pesticide residues were detected. However, one sample showed the presence of malathion (0.001 mg/kg). The detected level of malathion was within the acceptable safety limits, indicating that the sample is safe for consumption. Nevertheless, in one of the tomato samples tested, the residual level of phorate sulfoxide (0.34 mg/kg) is found to be higher than the MRL with a health risk index of 2.79. Except for phorate sulfoxide, all the other pesticide residuals were within MRL. Phorate residues with a soil half-life of 2 to 173 days are readily water soluble and may leach easily into groundwater, adversely affecting human health. The dietary risk of phorate can also put people at increased health risks of reproductive harm, endocrine system disruption, neurological damage, and an increased risk of certain cancers. The study's outcome suggests the need to review the strict guidelines imposed on using unsafe pesticides. Also, future investigations are necessary to validate the presence of other toxic pesticides in the study area.

期刊论文 2025-03-22 DOI: 10.1007/s10661-025-13896-9 ISSN: 0167-6369

Calcium carbide residue (CCR), a calcium-rich industrial waste, shows promise in improving mechanical properties of weak soils when used alone or in combination with pozzolanic materials and alkaline activators. This study comprehensively investigated the mechanical performance and stabilisation mechanism of CCR, CCR-fly ash, and alkaline-activated CCR-fly ash on kaolin clay, aiming to clarify their differences in mechanisms, identify their limitations, and promote effective application. The contribution of CCR, fly ash, alkaline activator, and initial water content of soil on enhancing soil strength was quantitively assessed through signal-to-noise ratio and analysis of variance (ANOVA) based on the Taguchi method. The stabilisation mechanism of different CCR-based materials was investigated by assessing the morphological and mineralogical features of stabilised samples. Taguchi analysis revealed that the development of soil strength was primarily influenced by initial water content in the early curing stage, while the contribution of fly ash became larger over time. Variation in CCR content had a limited effect on soil strength across all curing periods, as indicated by low contribution values and low statistical significance in ANOVA. The microstructural analyses revealed a low degree of formation of C-S-H and CA-H gels in soil stabilised with CCR alone and CCR combined with fly ash, while alkaline activated CCR-fly ash stabilised soil exhibited the coexistence of C-A-S-H and N-A-S-H gels. Taguchi superposition model was effectively used to estimate compressive strength results and supported the determination of suitable CCR-based materials for specific strength requirements.

期刊论文 2025-03-01 DOI: 10.1016/j.trgeo.2025.101543 ISSN: 2214-3912

Petroleum-based plastic resistance to biodegradation contributes to environmental pollution, depletes natural resources, and affects humans, animals, and plants. Plastic fragmentation into microplastics and nanoplastics further poses adverse effects on human health. Thus, switching to eco-friendly packaging holds great potential to combat these predicaments. Herein, soyhull lignocellulosic residue (SLR) was extracted using 20% NaOH treatment, solubilized in ZnCl2 solution and crosslinked the chains with calcium ions (CaCl2) and glycerol. Box Behnken Design was used to optimize the SLR, CaCl2, and glycerol amounts against the responses water vapor permeability (WVP), tensile strength (TS), and elongation at break (EB). The optimized SLR film biodegrades within 33 days at 24% soil moisture content. It is semitransparent with UV-blocking properties and displays the tensile strength (TS), elongation at break (EB), water vapor permeability (WVP), and IC50 value of 16.8 (3) MPa, 14.7 (2)%, 0.22 (4) x 10-10 gm- 1s- 1Pa- 1, and 0.4 (1) g/mL, respectively. The residual lignin retained in the SLR significantly increased film's TS. The film extends strawberries' shelf-life by 3 more days than plastic film and retains the original color, total soluble solids, ascorbic acid, and total phenolic compounds. Overall, the valueadded soyhull lignocellulose-based packaging films are advantageous in addressing plastic-related issues, leading to sustainable waste management and preserving fruits for longer durations.

期刊论文 2025-03-01 DOI: 10.1016/j.fbio.2025.106016 ISSN: 2212-4292
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 末页
  • 跳转
当前展示1-10条  共55条,6页