共检索到 3

Infrastructure in northern regions is increasingly threatened by climate change, mainly due to permafrost thaw. Prediction of permafrost stability is essential for assessing the long-term stability of such infrastructure. A key aspect of geotechnical problems subject to climate change is addressing the surface energy balance (SEB). In this study, we evaluated three methodologies for applying surface boundary conditions in longterm thermal geotechnical analyses, including SEB heat flux, n-factors, and machine learning (ML) models by using ERA5-Land climate reanalysis data until 2100. We aimed to determine the most effective approach for accurately predicting ground surface temperatures for climate-resilient design of northern infrastructure. The evaluation results indicated that the ML-based approach outperformed both the SEB heat flux and n-factors methods, demonstrating significantly lower prediction errors. The feasibility of long-term thermal analysis of geotechnical problems using ML-predicted ground surface temperatures was then demonstrated through a permafrost case study in the community of Salluit in northern Canada, for which the thickness of the active layer and talik were calculated under moderate and extreme climate scenarios by the end of the 21st century. Finally, we discussed the application and limitations of surface boundary condition methodologies, such as the limited applicability of the n-factors in long-term analysis and the sensitivity of the SEB heat flux to inputs and thermal imbalance. The findings highlight the importance of selecting suitable boundary condition methodologies in enhancing the reliability of thermal geotechnical analyses in cold regions.

期刊论文 2026-01-15 DOI: 10.1016/j.coldregions.2025.104735 ISSN: 0165-232X

The current Indian Standard Seismic Code IS 1893: Part 1 (2016) for general buildings lacks detailed guidelines on modeling soil-structure interaction (SSI) in the estimation of seismic demand and earthquake-induced damage in reinforced concrete buildings. Therefore, this study aims to investigate the effects of SSI, with a focus on its nonlinear behavior, on the seismic demand of ductile reinforced concrete frames designed as per IS 1893: Part 1. The selected RC buildings are designed for second-highest seismic risk zone in India and represent short, medium, and long-period structures commonly found across Indian sub-continent. The influence of SSI is studied for soil type II and type III, as specified in the Indian Code, which corresponds to medium stiff and soft soil sites, respectively. Using a nonlinear Winkler-based model, numerical finite element models of linear and nonlinear SSI have been developed for isolated shallow foundations. This study utilizes the results of incremental dynamic analysis to evaluate the fragility parameters for code specified performance limit states. Further, the estimated fragility parameters are integrated with the regional hazard curve coefficients to quantify the annual exceedance probability of specified damage levels. The simulation results highlight the critical impact of nonlinear SSI on the earthquake resilience of IS code designed low- to high-rise reinforced concrete buildings. Notably, the percentage increase in estimated fragilities is higher for low-rise buildings than high-rise buildings when subjected to ground motions on soil sites. Additionally, the vulnerability to failure of these buildings elevates significantly when they are analyzed on soft soil sites compared to medium soil and bedrock sites. Therefore, it is recommended to account for the significance of nonlinear SSI while assessing the expected structural performance and fragility of IS 1893: Part 1 designed stiff low- to medium-rise reinforced concrete buildings, as this step can substantially enhance the resiliency of such buildings in the aftermath of a disastrous earthquake.

期刊论文 2025-04-01 DOI: 10.1016/j.istruc.2025.108577 ISSN: 2352-0124

Part 1 of this review synthesizes recent research on status and climate vulnerability of freshwater and saltwater wetlands, and their contribution to addressing climate change (carbon cycle, adaptation, resilience). Peatlands and vegetated coastal wetlands are among the most carbon rich sinks on the planet sequestering approximately as much carbon as do global forest ecosystems. Estimates of the consequences of rising temperature on current wetland carbon storage and future carbon sequestration potential are summarized. We also demonstrate the need to prevent drying of wetlands and thawing of permafrost by disturbances and rising temperatures to protect wetland carbon stores and climate adaptation/resiliency ecosystem services. Preventing further wetland loss is found to be important in limiting future emissions to meet climate goals, but is seldom considered. In Part 2, the paper explores the policy and management realm from international to national, subnational and local levels to identify strategies and policies reflecting an integrated understanding of both wetland and climate change science. Specific recommendations are made to capture synergies between wetlands and carbon cycle management, adaptation and resiliency to further enable researchers, policy makers and practitioners to protect wetland carbon and climate adaptation/resiliency ecosystem services.

期刊论文 2018-04-01 DOI: 10.1007/s13157-018-1023-8 ISSN: 0277-5212
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页