共检索到 1

Hazardous waste from metal processing industries increases heavy metal contamination in ecosystems, threatening environmental health and regional sustainability. This study suggests a resilient and human-centered environmental monitoring approach that incorporates machine learning and decision analytics to address these challenges in line with Industry 5.0's goals. By utilising a PRINCIPAL COMPONENT REGRESSION (PCR)-based predictive model, the approach addresses variability in environmental data, predicting levels of heavy metals like lead, zinc, nickel, arsenic, and cadmium, frequently beyond regulatory thresholds. The suggested PCR-based model outperforms conventional models by lowering mean absolute error (MAE) to 2.9339, mean absolute percentage error (MAPE) to 0.0358, and nearly the same mean square error (MSE). This study introduces a more interpretable and computationally efficient alternative to existing predictive models by introducing a novel integration of PCR with machine learning for environmental monitoring. By predicting and optimising environmental outcomes, validation against test datasets confirmed its ability to optimise impurity control. After process adjustments, the average concentrations of lead, nickel, and cadmium were reduced from 13.23 to 11.26 mg/L, 2.83 to 2.70 mg/L, and 2.15 to 1.88 mg/L, respectively. This research supports sustainability, resilience, and decisionmaking aligned with Industry 5.0, offering scalable solutions and insights for global industries.HighlightsChemical plants' environmental risk is evaluated using a machine learning algorithmFor better monitoring, the PCR method forecasts process variables and interactionsIt identifies the key factors that affect the environmental risks in soil and waterAs a result, the local ecosystem's levels of toxic metals have notably decreasedInsights for managing environmental risks aligned with Industry 5.0 principles

期刊论文 2025-04-09 DOI: 10.1080/00207543.2025.2487567 ISSN: 0020-7543
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页