The large amount of slag generated during the construction of earth pressure balance shield (EPBS) not only incurs significant disposal costs, but also exacerbates environmental pollution. To improve the utilization of the shield slag, silty clay with additive is proposed as a slag conditioner instead of bentonite. Firstly, various macroscopic properties of the bentonite and silty clay slurries are tested. Subsequently, the relationships between the macroscopic properties of the silty clay slurries containing additives and the modification mechanism are evaluated at microscopic, mesoscopic, and macroscopic scales by using infrared spectroscopy (IR), scanning electron microscope (SEM), and Zeta potential tests, respectively. Based on these tests, reasons for variations in modification effects of different slurries are identified. The results show that addition of 3 % sodium carbonate to the silty clay can effectively improve the rheological properties of the slurry. The modification mechanism of sodium carbonate involves the formation of hydrogen bonds between water molecules and inner surface hydroxyl groups within the lattice layer of kaolinite. This process significantly enhances the rheological properties of the silty clay slurry. Furthermore, sodium carbonate alters the contact relationships between the silty clay particles, which increases viscosity and reduces permeability of the slurry. Finally, sodium carbonate increases thickness of the electrical double layer of the silty clay particles. This allows the particles to bind more water molecules, therefore improving slurry-making capacity of the silty clay. This paper presents an innovative multiscale analysis of the modification process of silty clay. The substitution of recycled silty clay for bentonite as a slag conditioner not only substantially reduces the cost of purchasing materials, but also considerably decreases the expenses associated with transportation and disposal of the soil discharged by EPBS.
The silt seabed can undergo liquefaction under wave action, resulting in the liquefied silt seabed exhibiting nonNewtonian fluid characteristics and fluctuating in phase with the overlying waves. The fluctuation of the liquefied silt seabed can impose periodic forces on the buried pipelines, posing a significant threat to their safety. This study achieves the measurement of the non-Newtonian fluid rheological properties of wave-induced liquefied silt, through the improvement of the falling-ball method. The improved falling-ball method enables in situ measurement of the rheological properties of liquefied silt in fluctuation state. This method is applied in two wave flume experiments to investigate the effects of wave intensity and the liquefaction process on the rheological properties of liquefied silt. Building on this foundation, a computational fluid dynamics (CFD) numerical model is developed to simulate the wave-liquefied silt interaction, utilizing the rheological properties of the liquefied silt obtained from experimental measurement. The model is used to evaluate the fluctuation velocity of the liquefied silt under field conditions and its forces acting on buried pipelines. The research findings provide foundational data for more accurate simulations of the movement of wave-induced liquefied silt and its effects on structures.
Studying the rheological properties of deep-sea shallow sediments can provide basic mechanical characteristics for designing deep-sea mining vehicles driving on the soft seabed, providing anchoring stability of semi-submersible mining platforms, and assessing submarine landslide hazards. Shallow sediment column samples from the Western Pacific mining area were obtained, and their rheological properties were studied. A series of rheological tests was conducted under different conditions using an RST rheometer. In addition, conventional physical property, mineral composition, and microstructure analyses were conducted. The results showed that shallow sediments have a high liquid limit and plasticity, with flocculent and honeycomb-like flaky structures as the main microstructure types. The rheological properties exhibited typical non-Newtonian fluid characteristics with yield stress and shear-thinning phenomena during the shearing process. In contrast to previous studies on deep-sea soft soil sediments, a remarkable long-range shear-softening stage, called the thixotropic fluid stage, was discovered in the overall rheological curve. A four-stage model is proposed for the transition mechanism of deep-sea shallow sediments from the solid to liquid-solid, solid-liquid transition, thixotropic fluid, and stable fluid stages. The mechanism of the newly added thixotropic fluid stage was quantitatively analyzed using a modified Cross rheological model, and this stage was inferred from the perspective of mineralogy and microstructure. The results of this study can be useful for improving the operational safety and work efficiency of submarine operation equipment for deep-sea mining in the Western Pacific Ocean. (c) 2025 Japanese Geotechnical Society. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
The enzyme-induced calcium carbonate precipitation (EICP) method has been utilized for curing low-permeability clay by directly mixing the reaction solution with soil. The added reaction solution quantity is limited by the optimal water content, producing insufficient calcium carbonate. Herein, the high-activity urease and high-concentration cementation solution efficacy in treating dispersive soils was evaluated. Phase transitions and structural modifications in EICP-cured soils were investigated through oscillatory amplitude scanning. The soil gradation influence on the EICP treatment effectiveness was assessed. The fluidized EICP-cured soil cementation and rupture mechanisms were investigated by viscosity measurements, electron microscopy, and zeta potential evaluations. A 3 M cementation solution, coupled with 500g/L of soybean urease, significantly enhanced the soil shear resistance, increasing it by 339% to 1807%. The EICP-cured soil gradually transitioned from a fluid to a paste and eventually to a solid within 168 h. High-clay-particle-content soils exhibited pronounced increases in shear resistance after EICP treatment. Under dynamic loading, three shear crack types emerged in EICP-cured soils, emphasizing the importance of soybean protein viscosity and calcium carbonate crystal filling-bonding capability in enhancing soil structural stability. The fluid solidification effectiveness in treating fine-grained soils utilizing EICP was validated through erosion trenches in fluid-solidified check dams, validating its potential.
Rubber-based intercropping is a recommended practice due to its ecological and economic benefits. Understanding the implications of ecophysiological changes in intercropping farms on the production and technological properties of Hevea rubber is still necessary. This study investigated the effects of seasonal changes in the leaf area index (LAI) and soil moisture content (SMC) of rubber-based intercropping farms (RBIFs) on the latex biochemical composition, yield, and technological properties of Hevea rubber. Three RBIFs: rubber-bamboo (RB); rubber-melinjo (RM); rubber-coffee (RC), and one rubber monocropping farm (RR) were selected in a village in southern Thailand. Data were collected from September to December 2020 (S1), January to April 2021 (S2), and May to August 2021 (S3). Over the study period, RB, RM, and RC exhibited significantly high LAI values of 1.2, 1.05, and 0.99, respectively, whereas RR had a low LAI of 0.79. The increasing SMC with soil depths was pronounced in all RBIFs. RB and RM expressed less physiological stress and delivered latex yield, which was on average 40% higher than that of RR. With higher molecular weight distributions, their rheological properties were comparable to those of RR. However, the latex Mg content of RB and RM significantly increased to 660 and 742 mg/kg, respectively, in S2. Their dry rubbers had an ash content of more than 0.6% in S3.
Preparing regolith-based composites for 3D printing is crucial in lunar base construction, leveraging costeffective and mechanically favorable materials for lunar construction by utilizing lunar regolith as the reinforcing phase. This research focuses on developing lunar regolith simulant as a matrix for 3D printing, which is crucial for in-situ resource utilization on the Moon. Resin-based composites, well-established in aerospace, are explored for their simple manufacturing and robust properties. The formulation involves simulated regolithbased polymer for direct ink writing printing. Rheological properties, including yield stress and plastic viscosity, are characterized across various cementite-sand ratios and printing temperatures. The relationship between extrudability, the time interval of the printing material and its rheological attributes is investigated. Quantitative assessment of material buildability employs three-dimensional scanning of the printed parts. Freeze-thaw cycle tests explore its temperature resilience. The influence of varying the printing infill rate on printing efficiency and the performance of the printed parts was assessed. It was found that modulating the printing infill rate affects the efficiency and performance of parts, with a 1:4 cementite-sand ratio and a 40 degrees C print temperature demonstrating optimal printing workability. These findings offer an efficient scheme for the automated production of regolithbased epoxy composites with precise structural, temperature-resistant, and favorable mechanical properties.
Superabsorbent nanocomposite hydrogels based on polyacrylamide (PAAm), cashew tree gum (CG), and laponite (LAP) were synthesized in different concentrations to investigate swelling, thermal, morphological and rheological properties. Vibrational modes confirmed the formation of hydrogels, while X-ray diffraction patterns reveal the semi-crystalline structure of the hydrogels. Thermal analysis showed that higher LAP content and CGLAP interactions improved the thermal stability of the hydrogels. Morphology analysis presented porous structures in CG-based hydrogels, contrasting with irregular plate-like structures in those without CG. The swelling capacity had better results in hydrogels with CG that were subjected to alkaline hydrolysis, mainly in a buffer solution with a pH > 4, due to the ionization of the hydrophilic groups. Hydrogels containing LAP maintained swelling degree stability at pH 10 and 12. In rheological tests, the addition of LAP increased the viscosity of the hydrogels, significantly improving the mechanical resistance of the hydrogels. Rheological parameters, such as the storage modulus (G ') and loss modulus (G ''), indicated that the materials exhibited predominantly solid behavior, particularly in CG-LAP-rich hydrogels. Low mortality of Artemia salina nauplii in toxicity tests confirmed material safety. The results indicate that CG-LAP hydrogels are promising for agricultural applications, offering optimized swelling properties, thermal stability, and mechanical strength.
Asphalt is considered one of the most essential materials used for road construction because of the high energy requirement for its production and its large greenhouse gas emission. VG30-grade asphalt is extensively utilized in road constructions as a binding material due to its ideal viscosity and superior performance characteristics at different climatic conditions, particularly in nations such as India. Biochar are materials, produced from organic biomass by pyrolysis. This study examined the influence of biochar produced from plant biomass as an alternative binder modifier for pavement. The investigation focused on the feasibility of using biochar at different percentages of 2.5%, 5%, 7.5%, and 10% by weight of VG30 to make it sustainable. Various physical experiments carried out included penetration test, softening point test, storage stability analysis and ductility test. Additional rheological tests carried out included rotational viscosity, original binder grading and Multiple Stress Creep and Recovery (MSCR). The findings demonstrated that using a binder modified with biochar led to significant improvement in rheological parameters, including enhanced rutting resistance, higher failure temperature and improved percentage recovery (R%). A decrease in the Non-Recoverable Creep Compliance (Jnr) value was also observed. The results showed therefore, that asphalt treated with biochar became more capable of resisting high temperatures. Thus, it can be determined that the biochar-modified binder at a 10% concentration is the most effective one regarding performance. The research emphasizes that biochar is a promisingly effective material that can enhance asphalt performance and contribute to improve agricultural waste management.
Understanding the rheological properties of clayey soils is significant for construction and geotechnical engineering, as these properties influence the stability and performance of building materials and structures. This study offers a new prospective for the rheological behavior of soils with water content near the liquid limit. Steady-state and dynamic rheological tests were conducted on kaolin, montmorillonite, and other three mixed clays of them at different water contents. In addition, microstructural analysis was performed to explain the microscopic mechanisms influencing the rheological responses of clays. The results show that for all the clays, the yield stress decreases with increasing water content. With the increase of shear rate, the viscosity first decreases rapidly and then decreases slowly. Clay mixtures exhibit greater microstructural stability than pure kaolin and montmorillonite, resulting in higher yield stress. Furthermore, dynamic shear testing provided insights into energy storage and loss modulus of clays near the solid-liquid transition phase. The proposed dynamic yield stress model effectively describes yield stress variation with the liquid limit under dynamic loading, relevant for assessing soil liquefaction potential and seismic resilience of structures. These findings offer valuable guidance for optimizing soil behavior in construction and enhancing structural performance in clay-rich regions.
Soil contamination by organic and hazardous substances is a critical environmental issue, particularly in developing countries. This study investigates the limitations of double-layer theory for bentonite-organic contaminant interactions through experimental and numerical analysis. Using NaCl and KCl as salts and acetone, isopropyl alcohol, and glycerol as organic contaminants, the research explores the rheological properties of Na-bentonite dispersions. The double-layer theory, particularly Stern's model, has limitations in accurately representing the interaction between bentonite and organic contaminants. The research aims to validate the double-layer equations and investigate the impact of viscosity and cation hydrated radius on the rheological properties of Na-bentonite. The novelty lies in introducing a range of viscosities into the pore fluid to challenge existing double-layer equations. Numerical calculations based on double-layer theory were used to analyze the total interaction energy. The study found that without salt, bentonite showed similar rheological behavior in acetone and alcohol but higher yield stress in glycerol. NaCl up to 0.1 M increased yield stress, while 0.5 M reduced it. KCl had a more pronounced effect on rheological properties than NaCl, highlighting the importance of cation hydrated radius. In soil-organic mixtures, lower viscosity organic chemicals increased yield stress. Despite similar dielectric constants, acetone showed higher yield stress than glycerol at lower concentrations, but at higher concentrations, dielectric constant differences became dominant. The study confirms the limitations of double-layer theory in bentonite-organic contaminant interactions, particularly regarding pore fluid viscosity, though it remains reliable at high contaminant concentrations.