共检索到 19

Permafrost degradation is one of the most significant consequences of climate change in the Arctic. During summers, permafrost degradation is evident with cryospheric hazards like retrogressive thaw slumps (RTSs) and active layer detachment slides (ALDs). In parallel, the Arctic has become a popular tourist destination for nature-based activities, with summer being the peak touristic season. In this context, cryospheric hazards pose potential risks for tourists' presence in Arctic national parks and wilderness in general, like in the Yukon. This essay provides the basis for investigating further periglacial, geomorphological and tourism intersections, highlighting the critical need for future interdisciplinary research on thawing permafrost impacts. More so, this requires moving beyond the predominant focus on permafrost impacts on infrastructure and to also consider the direct threats posed to human physical presence in Arctic tourist destinations affected by permafrost degradation. Such interdisciplinary approach is critical not only to mitigate risks, but also to provide policy- and decision-makers with valuable insights for implementing measures and guidelines.

期刊论文 2025-05-01 DOI: 10.1007/s10584-025-03942-3 ISSN: 0165-0009

Hydrologically-induced landslides are ubiquitous natural hazards in the Himalayas, posing severe threat to human life and infrastructure. Yet, landslide assessment in the Himalayas is extremely challenging partly due to complex and drastically changing climate conditions. Here we establish a mechanistic hydromechanical landslide modeling framework that incorporates the impacts of key water fluxes and stocks on landslide triggering and risk evolution in mountain systems, accounting for potential climate change conditions for the period 1991-2100. In the drainage basin of the largest river in the northern Himalayas- the Yarlung Zangbo River Basin (YZRB), we estimate that rainfall, glacier/snow melt and permafrost thaw contribute similar to 38.4%, 28.8%, and 32.8% to landslides, respectively, for the period 1991-2019. Future climate change will likely exacerbate landslide triggering primarily due to increasing rainfall, whereas the contribution of glacier/snow melt decreases owing to deglaciation and snow cover loss. The total Gross Domestic Productivity risk is projected to increase continuously throughout the 21st century, while the risk to population shows a general declining trend. The results yield novel insights into the climatic controls on landslide evolution and provide useful guidance for disaster risk management and resilience building under future climate change in the Himalayas.

期刊论文 2025-02-01 DOI: 10.1029/2024WR039611 ISSN: 0043-1397

Climate change is causing permafrost in the Qinghai-Tibet Plateau to degrade, triggering thermokarst hazards and impacting the environment. Despite their ecological importance, the distribution and risks of thermokarst lakes are not well understood due to complex influencing factors. In this study, we introduced a new interpretable ensemble learning method designed to improve the global and local interpretation of susceptibility assessments for thermokarst lakes. Our primary aim was to offer scientific support for precisely evaluating areas prone to thermokarst lake formation. In the thermokarst lake susceptibility assessment, we identified ten conditioning factors related to the formation and distribution of thermokarst lakes. In this highly accurate stacking model, the primary learning units were the random forest (RF), extremely randomized trees (EXTs), extreme gradient boosting (XGBoost), and categorical boosting (CatBoost) algorithms. Meanwhile, gradient boosted decision trees (GBDTs) were employed as the secondary learning unit. Based on the stacking model, we assessed thermokarst lake susceptibility and validated accuracy through six evaluation indices. We examined the interpretability of the stacking model using three interpretation methods: accumulated local effects (ALE), local interpretable model-agnostic explanations (LIME), and Shapley additive explanations (SHAP). The results showed that the ensemble learning stacking model demonstrated superior performance and the highest prediction accuracy. Approximately 91.20% of the total thermokarst hazard points fell within the high and very high susceptible areas, encompassing 20.08% of the permafrost expanse in the QTP. The conclusive findings revealed that slope, elevation, the topographic wetness index (TWI), and precipitation were the primary factors influencing the assessment of thermokarst lake susceptibility. This comprehensive analysis extends to the broader impacts of thermokarst hazards, with the identified high and very high susceptibility zones affecting significant stretches of railway and highway infrastructure, substantial soil organic carbon reserves, and vast alpine grasslands. This interpretable ensemble learning model, which exhibits high accuracy, offers substantial practical significance for project route selection, construction, and operation in the QTP.

期刊论文 2024-07-01 DOI: 10.3390/atmos15070788

High Mountain Asia (HMA) shows a remarkable warming tendency and divergent trend of regional precipitation with enhanced meteorological extremes. The rapid thawing of the HMA cryosphere may alter the magnitude and frequency of nature hazards. We reviewed the influence of climate change on various types of nature hazards in HMA region, including their phenomena, mechanisms and impacts. It reveals that: 1) the occurrences of extreme rainfall, heavy snowfall, and drifting snow hazards are escalating; accelerated ice and snow melting have advanced the onset and increased the magnitude of snowmelt floods; 2) due to elevating trigger factors, such as glacier debuttressing and the rapid shift of thermal and hydrological regime of bedrock/snow/ice interface or subsurface, the mass flow hazards including bedrock landslide, snow avalanche, ice-rock avalanches or glacier detachment, and debris flow will become more severe; 3) increased active-layer detachment and retrogressive thaw slumps slope failures, thaw settlement and thermokarst lake will damage many important engineering structures and infrastructure in permafrost region; 4) multi-hazards cascading hazard in HMA, such as the glacial lake outburst flood (GLOF) and avalanche-induced mass flow may greatly enlarge the destructive power of the primary hazard by amplifying its volume, mobility, and impact force; and 5) enhanced slope instability and sediment supply in the highland areas could impose remote catastrophic impacts upon lowland regions, and threat hydropower security and future water shortage. In future, ongoing thawing of HMA will profoundly weaken the multiple-phase material of bedrock, ice, water, and soil, and enhance activities of nature hazards. Compounding and cascading hazards of high magnitude will prevail in HMA. As the glacier runoff overpasses the peak water, low flow or droughts in lowland areas downstream of glacierized mountain regions will became more frequent and severe. Addressing escalating hazards in the HMA region requires tackling scientific challenges, including understanding multiscale evolution and formation mechanism of HMA hazard-prone systems, coupling thermo-hydro-mechanical processes in multi-phase flows, predicting catastrophes arising from extreme weather and climate events, and comprehending how highland hazards propagate to lowlands due to climate change.

期刊论文 2024-06-01 DOI: 10.1016/j.accre.2024.06.003 ISSN: 1674-9278

Much attention is drawn to polycyclic aromatic hydrocarbons (PAHs) as an air pollutant due to their toxic, mutagenic and carcinogenic properties. Therefore, to understand the levels, seasonality, sources and potential health risk of PAHs in two distinct geographical locations at Karachi and Mardan in Pakistan, total suspended particle (TSP) samples were collected for over one year period. The average total PAH concentrations were 31.5 +/- 24.4 and 199 +/- 229 ng/m(3) in Karachi and Mardan, respectively. The significantly lower concentration in Karachi was attributed to diffusion and dilution of the PAHs by the influence of clean air mass from the Arabian sea and high temperature, enhancing the volatilization of the particle phase PAHs to the gas phase. Conversely, the higher concentration (6 times) in Mardan was due to large influence from local and regional emission sources. A clear seasonality was observed at both the sites, with the higher values in winter and post-monsoon due to higher emissions and less scavenging, and lower values during monsoon season due to the dilution effect. Diagnostic ratios and principal component analysis indicated that PAHs in both sites originated from traffic and mixed combustion sources (fossil fuels and biomass). The average total BaP equivalent concentrations (BaPeq) in Karachi and Mardan were 3.26 and 34 ng/m(3) , respectively, which were much higher than the WHO guideline of 1 ng/m(3) . The average estimates of incremental lifetime cancer risk from exposure to airborne BaPeq via inhalation indicated a risk to human health from atmospheric PAHs at both sites. (C) 2021 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

期刊论文 2023-10-01 DOI: http://dx.doi.org/10.1016/j.jes.2021.04.024 ISSN: 1001-0742

In 2015 the beginning of the Indian Smart Cities' mission was one of the significant steps taken by the Indian government to make the urban environment resilient to climate change impact and extreme weather events like drought, floods, heatwaves, etc. This study computes the urban drought risk for Indian smart cities before the beginning of the Indian smart cities mission. This study considers three decadal variability (1982-2013) in meteorological, hydrological, vegetation, and soil moisture parameters for inducing water scarcity and drought conditions in urban regions. Hazards associated with urban drought-inducing parameters variability, vulnerability, and exposure of Indian smart cities were used to compute the Urban drought risk. The research investigations revealed the maximum urban drought risk for Bangalore, Chennai, and Surat cities. Northwest, West Central, and South Peninsular urban regions have higher risk among all the urban regions of India. Indian smart cities mission can be used to make Indian cities resilient to urban drought risk and increase their sustainability. The present research aligned with several national and international agreements by providing an urban drought risk rank for Indian cities, making them less vulnerable to extreme weather events and improving their resilience to climate change.

期刊论文 2023-10-01 DOI: 10.1016/j.jhydrol.2023.130056 ISSN: 0022-1694

Microplastic is an emerging contaminant of concern in soil globally due to its widespread and potential risks on the ecological system. Some basic issues such as the occurrence, source, and potential risks of microplastics in the soil are still open questions. These problems arise due to the lack of systematic and comprehensive analysis of microplastic in soils. Therefore, we comprehensively reviewed the current status of knowledge on microplastics in soil on detection, occurrence, characterization, source, and potential risk. Our review suggests that microplastics are ubiquitous in soil matrices globally. However, the research progress of microplastics in the soil is restricted by inherent technological inconsistencies and difficulties in analyzing particles in complex matrices, and studies on the occurrence and distribution of microplastics in soil environments remain very scarce, especially in Africa, South America, and Oceania. The consistency of the characteristics and composition of the microplastics in the aquatic environment and soil demonstrate they may share sources and exchange microplastics. Wide and varied sources of microplastic are constantly filling the soil, which causes the accumulation of microplastics in the soil. Studies on the effects and potential risks of microplastics in soil ecosystems are also reviewed. Limited research has shown that the combination and interaction of microplastics with contaminants they absorbed may affect soil health and function, and even migration along the food chain. The occurrence and impact of microplastic on the soil depend on the morphology, chemical components, and natural factors. We conclude that large research gaps exist in the quantification and estimation of regional emissions of microplastics in soil, factors affecting the concentration of microplastics, and microplastic disguising as soil carbon storage, which need more effort. (c) 2021 Elsevier B.V. All rights reserved.

期刊论文 2023-09-01 DOI: http://dx.doi.org/10.1016/j.scitotenv.2021.146546 ISSN: 0048-9697

Rapid atmospheric warming changes the thermal conditions of permafrost over the Northern Hemisphere (NH), including ground temperature warming and ground ice thawing. This warming and thawing of ice-rich permafrost damages existing infrastructure and poses a threat to sustainable development. Bearing capacity (BC) loss and ground subsidence (GS) due to permafrost thawing are two major risks to the infrastructure and key indexes for risk assessment. However, current information on the BC and GS is too coarse, restricted to the Arctic, and scarce for future periods. The aim of this study was to address these gaps by presenting spatial data on the BC and GS for current and future periods across the NH at a resolution of 1 km. A machine learning-based approach was developed to simulate permafrost thermal dynamics under four climate scenarios (SSPs 1-2.6, 2-4.5, 3-7.0, and 5-8.5). The associated changes in the BC and GS were estimated based on changes in the permafrost temperature at or near the depth of zero annual amplitude (MAGT) and active-layer thickness (ALT). The results indicate a continuous increase in MAGT and ALT by 2.3 degrees C (SSPs1-2.6) to 7.6 degrees C (SSPs5-8.5) and 16.0 cm (SSPs1-2.6) to 51.0 cm (SSPs5-8.5), respectively, at the end of the 21ts century. This permafrost degradation will lead to a high potential BC loss of 37.8% (SSPs1-2.6) to 40.2% (SSPs5-8.5) on average over 2041-2060, and up to 60.5% (SSPs1-2.6) to 92.2% (SSPs5-8.5) in 2081-2100. The produced average GS is approximately 1.0 cm in 2021-2040, and further up to 1.5 cm (SSPs1-2.6) to 4.7 cm (SSPs5-8.5) in 2081-2100, with notable variations across the permafrost region. These forecasts provide new opportunities to assess future permafrost changes and associated risks and costs with climate warming.

期刊论文 2023-07-01 DOI: 10.1016/j.gloplacha.2023.104156 ISSN: 0921-8181

Microplastic pollution has become an increasingly important environmental issue worldwide in recent years because of its ubiquitous presence in different environmental media and its potential to affect the health of organisms and ecosystems. Aquaculture contributes significantly to the world's food production and nutritional supply, especially in developing countries. Widespread occurrence of microplastics in aquaculture systems has raised great concern regarding aquaculture production and food safety issues of aquaculture products. China is a world leader in aquaculture production, with freshwater aquaculture accounting for 59.1% of total aquaculture production of the world in 2020. Therefore, this review mainly focuses on recent research progress related to microplastic pollution in freshwater aquaculture systems in China. Results from the literature show that microplastics are present in freshwater aquaculture systems at abundances comparable to natural waterbodies in China. Microplastics can be ingested and remain in the body of aquaculture products. Exposure to microplastics can adversely affect the health of aquatic organisms and aquatic ecosystem functions. However, risks of microplastics in real world environment remain uncertain. Consumption of freshwater aquaculture products is not a major pathway for human exposure to microplastics. To provide scientific guidance for governmental decision-making and pollution control, future work should focus on progress in toxicological methodology and understanding the impacts of microplastics at community and ecosystem levels.

期刊论文 2023-06-01 DOI: http://dx.doi.org/10.1016/j.watbs.2022.100040

Glaciers, which constitute the world's largest global freshwater reservoir, are also natural microbial repositories. The frequent pandemic in recent years underscored the potential biosafety risks associated with the release of microorganisms from the accelerated melting of glaciers due to global warming. However, the characteristics of pathogenic microorganisms in glaciers are not well understood. The glacier surface is the primary area where glacier melting occurs that is often the main subject of research on the dynamics of pathogenic microbial communities in efforts to assess glacier biosafety risks and devise preventive measures. In this study, high-throughput sequencing and quantitative polymerase chain reaction methods were employed in analyses of the composition and quantities of potential pathogenic bacteria on the surfaces of glaciers in the southeastern Tibetan Plateau. The study identified 441 potential pathogenic species ranging from 215 to 4.39 x 10(11) copies/g, with notable seasonal and environmental variations being found in the composition and quantity of potential pathogens. The highest level of diversity was observed in April and snow, while the highest quantities were observed in October and cryoconite. Host analysis revealed that >70 % of the species were pathogens affecting animals, with the highest proportion of zoonotic pathogens being observed in April. Analysis of aerosols and glacial meltwater dispersion suggested that these microbes originated from West Asia, primarily affecting the central and southern regions of China. Null model analysis indicated that the assembly of potential pathogenic microbial communities on glacier surfaces was largely governed by deterministic processes. In conclusion, potential pathogenic bacteria on glacier surfaces mainly originated from the snow and exhibited significant temporal and spatial variation patterns. These findings can be used to enhance researchers' ability to predict potential biosafety risks associated with pathogenic bacteria in glaciers and to prevent their negative impact on populations and ecological systems.

期刊论文 2023-04-15 DOI: http://dx.doi.org/10.1016/j.scitotenv.2024.173937 ISSN: 0048-9697
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共19条,2页