Study region: The study focuses on the Indus River Basin and southern Pakistan, severely affected by flooding in 2022. Study focus: This study assessed how land surface temperature, snow cover, soil moisture, and precipitation contributed to the deluge of 2022. This study mainly investigated MODIS-AIRS land surface temperature, MODIS snow cover (NDSI), SMAP soil moisture, and GPM IMERG precipitation accumulation. Furthermore, different flood visualization and mapping techniques were applied to delineate the flood extent map using Landsat 8-9, Sentinel-2 MSI, and Sentinel-1 SAR data. New hydrological insights for the region: The region experienced some of the most anomalous climatic events in 2022, such as prolonged heatwaves as observed with higher-than-average land surface temperatures and subsequent rapid decline in snow cover extent during the spring, increased soil moisture followed by an abnormal amount of extreme monsoon precipitation in the summer. The upper subbasins experienced more than 8 degrees C in positive temperature anomaly, indicating a warmer climate in spring. Subsequently, the snow cover declined by more than 25 % in the upper subbasins. Further, higher surface soil moisture values (> 0.3 m3/m3) were observed in the basin during the spring due to the rapid snow and ice melt. Furthermore, the basin received more than 200 mm of rainfall compared to the long-term average rainfall of about 98 mm, translating to about 300 % more rainfall than usual in July and August. The analysis helps understand the spatial and temporal variability within the basin and facilitates the understanding of factors and their intricate connections contributing to flooding.
Increasing global warming has led to the incremental retreat of glaciers, which in turn affects the water supply of the rivers dependent on glacier melts. This is further affected by the increases in flooding that is attributable to heavy rains during the snowmelt season. An accurate estimation of streamflow is important for water resources planning and management. Therefore, this paper focuses on improving the streamflow forecast for Kaidu River Basin, situated at the north fringe of Yanqi basin on the south slope of the Tianshan Mountains in Xinjiang, China. The interannual and decadal scale oceanic-atmospheric oscillations, i.e.,Pacific decadal oscillation (PDO), North Atlantic oscillation (NAO), Atlantic multidecadal oscillation (AMO), and El Nino-southern oscillation (ENSO), are used to generate streamflow volumes for the peak season (April-October) and the water year, which is from October of the previous year to September of the current year for a period from 1955-2006. A data-driven model, least-square support vector machine (LSSVM), was developed that incorporated oceanic atmospheric oscillations to increase the streamflow lead time. Based on performance measures, predicted streamflow volumes are in agreement with the measured volumes. Sensitivity analyses, performed to evaluate the effect of individual and coupled oscillations, revealed a stronger presence of coupled PDO, NAO, and ENSO indices within the basin. The AMO index shows a pronounced effect when individually compared with the other oscillation modes. Additionally, model-forecasted streamflow is better than that for climatology. Overall, very good streamflow predictions are obtained using the SVM modeling approach. Furthermore, the LSSVM streamflow predictions outperform the predictions obtained from the most widely used feed-forward back-propagation models, artificial neural network, and multiple linear regression. The current paper contributes in improving the streamflow forecast lead time, and identified a coupled climate signal within the basin. The increased lead time can provide useful information to water managers in improving the planning and management of water resources within the Kaidu River Basin. (C) 2013 American Society of Civil Engineers.