Winter baseflow (WB) can stabilize freshwater inputs and has important impacts on nutrient migration and the water cycle of a specific region and the oceans. This study systematically analyzed the WB variations in fourteen major Eurasian rivers and found they all had commonly increasing trends (except the Yellow River), with the mean increase ratio of 53.0% (+/- 34.8%, confidence interval 95%) over the past 100 years (the longest time series is 1879-2015). Relative to Northern Eurasia (60 degrees N-70 degrees N) and Southern Eurasia (30 degrees N-40 degrees N), the river WB in middle Eurasia (40 degrees N-60 degrees N) had the largest increase rate (0.60%/year). The increases of the WB in Northern Eurasia and Southern Eurasia have speeded up since the 1990s; on the contrary, they have slowed down or even turned to a decreasing trend after the 1990s in the middle Eurasian rivers. Using multiple linear regression analysis, the quantitative relationship between WB and winter surface air temperature (max, mean and min), snowfall, soil temperature, antecedent precipitation, as well as the river-ice dynamic were determined. We found that the winter air temperature, especially the minimum air temperature was one major factor accounting for WB variation in Eurasia over the past century. When the winter air temperature rises, this leads a reduction in the thickness and volume of river ice, and thus decreases water storage in river ice and leads to an increase in the WB. About 19.6% (6.7%-41.5%) of the winter WB increase in rivers of Siberia was caused by the decreased river ice during the past 100 years. Although groundwater recharge was the dominant reason for WB change, the role of river ice should not be ignored in hydrological study of cold regions.
This review article deals with bank erosion from the perspective of rivers affected by seasonal ice formation. These rivers drain half of the terrestrial land surface globally, and are mainly located in both periglacial and cold, non-periglacial environments across the Northern Hemisphere. This review is based on a literature survey of 126 publications (articles, technical reports, conference papers and book chapters) documenting case studies in temperate and polar climates. The first details the global issues of bank erosion and pinpoints concerns specific to northern environments. The second describes the dominant erosion processes (fluvial vs. terrestrial), mechanisms (mechanical vs. thermal) and typical landforms encountered in the literature. The third reviews the environmental factors (hydraulic vs. non-hydraulic) controlling bank erosion, with a focus on the different forms of river ice. The fourth deals with the spatial and temporal variability in bank-erosion processes, discussing the distribution of process dominance occurring at the reach scale and the catchment scale, and describing the temporal window in which each process dominates. The fifth reviews the expected impacts on bank erosion resulting from climate-induced disturbances on hydrological cycles and from increasing anthropogenic pressures along riverbanks in northern countries. The relationships among erosion processes, environmental factors, climate change, and human impacts are summarized in a sixth that introduces a new synthetic conceptual diagram of bank erosion. Research needs that should be investigated in the future are highlighted in the seventh while the final synthesizes all the aspects presented in this review.