共检索到 2

Freeze-thaw cycles significantly affect soil behavior, leading to pavement failures and infrastructure damage, especially in seasonally freezing regions. The application of road salt for deicing operations introduces high salt concentrations into soils, which can alter their physical properties. Salt in soils affects their freezing point, moisture migration, and overall freeze-thaw behavior. This study investigates the effects of varying sodium chloride (NaCl) concentrations on sandy soil using both the ASTM and low-temperature-gradient methods to simulate different freezing protocols. The methodology involved subjecting soil specimens with 0%, 0.2%, 1%, and 5% salt concentrations to freeze-thaw cycles and measuring parameters such as heave rate, maximum heave, water intake, moisture content, and salt migration. The results revealed that increasing salt concentration leads to a reduction in the freezing point, with the 5% NaCl concentration showing the most significant depression at 2.96 degrees C. The heave rate and maximum heave decreased with higher salt concentrations: the 5% NaCl concentration reduced the heave rate to 11.3 mm/day (ASTM method) and 1.5 mm/day (low-temperature-gradient method) from 22.5 mm/day (ASTM method) and 17.2 mm/day (low-temperature-gradient method) in control. Salt migration analysis indicated more variability in salt distribution within the soil profile under the low-temperature-gradient method, especially at higher salt concentrations. This variability is linked to osmotic suction effects, which retain more water within the soil matrix during freeze-thaw cycles. The study highlights the importance of considering both salinity and freezing protocols in understanding soil behavior under freeze-thaw conditions.

期刊论文 2025-05-11 DOI: 10.1177/03611981251330893 ISSN: 0361-1981

Anthropogenic activities such as the over-application of road deicers are causing an increase in the concentration of salts in historically fresh waters. Experimental and field investigations demonstrate that freshwater salinization disrupts ecosystem functions and services, causing the death of freshwater organisms and changes to nutrient conditions. Wetland habitats are one system negatively affected by salt pollution, including ephemeral wetlands (vernal pools) that fill with salt-polluted water after snowmelt. In urbanized areas, the degradation of these ecosystems could result in irreversible ecological damage including reduced water quality and a reduction in biodiversity. To investigate the effects of freshwater salinization on vernal pool communities, we exposed soils from vernal pools to water containing no salt (control), or four concentrations of three salts standardized by chloride concentration (50 mg Cl- L-1, 100 mg Cl- L-1, 200 mg Cl- L-1, and 400 mg Cl- L-1; magnesium chloride, calcium chloride, and sodium chloride). The results of this experiment suggest that emerging zooplankton communities in vernal pools are sensitive to low concentrations of salt pollution, and that alternative salts such as magnesium chloride and calcium chloride are more toxic than sodium chloride. We did not find positive or negative changes in the abundance of eukaryotic phytoplankton but did find negative effects of salt on cyanobacteria abundance, possibly due to corresponding reductions in turbidity which might be needed as a fixation site for cyanobacteria to form heterocysts. Finally, we found that salt pollution likely caused flocculation of Dissolved Organic Matter (DOM), resulting in reduced concentrations of DOM which could alter the buffering capacity of freshwater systems, light attenuation, and the populations of planktonic heterotrophs.

期刊论文 2024-06-25 DOI: 10.1016/j.scitotenv.2024.172948 ISSN: 0048-9697
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页