The European rabbit (Oryctolagus cuniculus) is a keystone species in Mediterranean ecosystems but also considered a pest in some agricultural areas. Despite its threatened status due to diseases and habitat loss, rabbit populations thrive in motorway verges, causing conflicts with human activities. In this study we examine the factors affecting rabbit warren abundance in motorway verges in central Spain, with implications for conservation and management. The research aimed to assess the importance of infrastructure (e.g. motorway slopes) and landscape (e.g. land use, soil depth) factors on rabbit warren abundance along 1631 km of motorway verges and to develop an index for broader-scale abundance and risk assessment. Using generalized linear mixed models, the study revealed that both infrastructure (slope) and landscape factors (soil depth, vegetation structure and land cover gradients) significantly influenced warren abundance. Rabbit warrens were more abundant in agricultural landscapes with deep soils and in intermediate slope ranges. The findings suggest that rabbit abundance in motorway verges is driven by a combination of factors involving both infrastructure features but also land use in surrounding areas. The derived model predictions were able to correctly discriminate between crop damaged and non-damaged areas, highlighting its potential as a tool for conflict mitigation and conservation planning. The study underscores the need to integrate landscape and infrastructure features into wildlife management strategies to address human-wildlife conflicts effectively. Future work should include direct population monitoring and explore broader ecological impacts, such as predator dynamics and wildlife-vehicle collisions.
Purpose of ReviewForest roads, which are important for accessing and managing forest areas, are particularly vulnerable to damaging impacts of severe climatic events. Understanding how weather changes affect forest roads is important for their efficient management and to ensure their reliability in supporting forest products supply chains. This paper reviews research conducted on the impact of climate factors on forest roads over the past two decades. The aim of our study was to develop a conceptual framework to support adaptation and mitigation strategies in forest road network management, ensuring sustainable wood flow despite a changing climate.Recent FindingsThrough a review of scientific articles and their results, we provided insights and recommendations to increase the resiliency of forest road infrastructures against the effects of climate change. Framed within the principles of climate-smart forestry, this study also offers practical suggestions to maintain the efficiency and safety of wood transportation networks under changing weather conditions, supporting sustainable forest operations and climate adaptation.SummaryThis review highlights how changes in precipitation and temperature patterns caused by climate change can impact forest road infrastructure and wood transportation. Based on the analysis of the reviewed articles, we identified key consequences such as increased erosion, road deformation, and reduced frozen periods. The research provides dedicated actions to ensure sustainability of forest resources and their infrastructure. This review is a key step towards more resilient and adaptive forest road management practices, helping to reduce the impacts of climate change on forest transportation and ecological systems.
Unpaved roads are essential for transportation infrastructure, particularly for forest industry. Traditionally, unpaved roads are composed of layers using local soils. Poor local soils need to be replaced with gravel, crushed aggregate, or amixture of materials. Due to traffic and weather conditions, unpaved roads require frequent maintenance and repair. To reduce the amount of quality materials and the frequency of maintenance operations, reinforcements can be used (synthetic or natural). This paper focussed on the behaviour of a fine soil reinforced with natural fibres from the forest value chain (pine needles), to assess their use on unpaved forest roads. Cyclic CBR tests were carried out to assess the resilient response of the soil (unreinforced and reinforced); the tests included initial monotonic loading, followed by cyclic loading. The force-penetration response and CBR value improved with the inclusion of pine needles; the best response corresponded to a percentage of incorporation of 1% (mass). For the cyclic loading phase, the permanent displacement decreased with the number of cycles, approaching a resilient response. The reinforcement with pine needles led to an improved elastic response, represented by an equivalent stiffness modulus. The best behaviour was, again, obtained for a percentage of incorporation of 1% (mass). The addition of fibres led to reduced displacements during the test, relatively to the unreinforced soil. The results showed that for unpaved forest roads, where the investment in soil characterisation is often very limited, cyclic CBR tests can be a promising approach in obtaining design parameters.
Principal stress rotation (PSR) significantly affects the cyclic behaviour of subgrade soil. Previous studies on PSR have been generally limited to saturated and isothermal conditions despite subgrade soil experiencing daily and seasonal variations in temperature and suction. This study incorporated temperature- and suction-controlled units into existing hollow cylinder apparatus to conduct cyclic shear tests, both with and without PSR, while maintaining identical cyclic deviatoric stress. The study considered different temperatures (5 degrees C, 20 degrees C, and 40 degrees C) and suctions (0, 10, and 30 kPa). The permanent strain increases and resilient modulus decreases as temperature rises and suction decreases. Furthermore, the incorporation of PSR results in increased permanent strain and decreased resilient modulus, with these changes being influenced by temperature and suction. At zero suction, the permanent strain increases by 130% and 230% at 5 degrees C and 40 degrees C when PSR is incorporated. As suction increases to 10 kPa, these values are 50% and 80%. These coupled effects are likely due to the decrease in the overconsolidation ratio (OCR) with increasing temperature and decreasing suction, with PSR effects being more pronounced at lower OCRs. Furthermore, a new semi-empirical equation was proposed to model these coupled effects on resilient modulus, a critical parameter in pavement design.
Contaminant leaching from asphalt pavements poses a significant environmental concern, potentially damaging soil and groundwater quality. The growing interest in incorporating recycled materials in asphalt pavements has further raised concerns over the potential environmental hazards due to contaminant leaching. Consequently, this paper offers a comprehensive review of the literature over the past three decades structured into six sections: groundwater contamination via leaching, methodologies for evaluating leaching, analysis of contaminants, contaminants and leaching from road materials incorporating recycled waste, other factors affecting leaching of pollutants from asphalt pavements, and mathematical models to predict leaching from asphalt pavements. Despite the importance of addressing leaching issues, there is a lack of standardised leaching tests and guidelines specific to asphalt materials, limited attention to evaluating contaminants beyond heavy metals and PAHs in asphalt leachates, insufficient understanding of optimal instrument parameters for asphalt leachate analysis, and a scarcity of mathematical models to predict future leaching potential.
There are 14 northern communities in Nunavik, the Arctic region of Quebec province, Canada. Transportation infrastructure plays a vital role in the social and economic development of these localities. The thawing of permafrost compromises the stability of northern transportation infrastructure. Harsh Arctic climate conditions limit the installation of effective monitoring systems to assess infrastructure stability. In Akulivik, the access road connects the Akulivik airport and the village of Akulivik. There is no monitoring to observe the thermal condition of the permafrost foundation of the access road, hindering the capacity to perform preventive maintenance activities, especially in the context of observed climate warming in Nunavik. This paper describes a project aiming at the assessment of the stability of the access road using a new approach and proposes adaptation solutions to stabilize the road, based on design tools recently developed. Particular attention was paid to the foundation soil under the side slope where relatively rapid permafrost degradation was occurring due to accumulated snow. The results indicate a positive thermal gradient of 0.29 degrees C/m under the side slope and a near-zero thermal gradient under the centerline. Projected climate warming was also considered to further investigate the thermal condition, providing a safety margin for the design of promising adaptation solutions. These results assist government agencies in evaluating the thermal conditions of underlying permafrost and deploying potential adaptation solutions in Akulivik.
Currently, there are materials from industry that, under certain physical conditions, can contribute to the improvement of soils mechanical properties. Materials such as brick dust (BD) and fly ash (FA) have high SiO2 and Al2O3 contents, which denote pozzolanic activity. In addition, it has been shown that these materials can be activated when combined with lime. This generates internal cementation processes when the particle size is 0.075 mm. Rural roads in Colombia have one of the highest percentages of the entire road infrastructure, and only about 7% are in good condition. Difficult access conditions, soil susceptibility, the financial impossibility of intervening in this entire network and the need to implement circular economy processes, make these materials attractive in terms of stabilization to improve traffic conditions. BD and FA were applied in dosages of 0%, 3%, 6%, 9%, 12% and 24% in finogranular soils (silt and clay) and sandy soils, compaction was evaluated, and a factorial experimental design was carried out to evaluate the influence of the material on the variable unconfined compressive strength (UCS), through an ANOVA analysis. To evaluate the performance of BD and FA, a test track was made on a low traffic volume road in northern Colombia, which had a sandy soil. BD and FA were added at 12% and activated with lime, in 30 m long cells. To establish a comparative pattern, other cells were made in the same geometric conditions with materials that are usually used in this type of application, such as cement. These cells were evaluated over a period of 16 months. Characteristics such as resilient modulus, international roughness index (IRI) and slip resistance coefficient were measured during this period. The results indicate that when these materials are added to finogranular soils (silts and clays), the UCS increases by 150% with respect to the unstabilized soil, while for sandy soils the strength increases from 70% to 125%. During the evaluation period, the BD and the FA were able to increases of over 50% in the resilient modulus with respect to the unstabilized soil. However, the FA showed comparable results with respect to the cement-stabilized cell. In addition, although the sections deteriorated over time, they maintained their roughness index within the admissible ranges indicative of a good serviceability index.
This study aims to investigate the economic effects of stormwater best management practices (BMPs) on housing sale prices in Washington, D.C., BMPs play a significant role in mitigating multiple threats, such as water pollution, soil erosion, and property damage. While studies on the economic value of BMPs were limited, literature addresses that housing sale prices can be affected by nearby stormwater BMPs. This study addresses the following research questions: Do stormwater BMPs positively impact housing sale prices? How do proximity and number of structural BMPs affect the housing sale prices? We used the hedonic pricing method by applying multiple linear regression models to determine whether a set of independent variables significantly improved the models. Our primary findings indicate that BMPs have positive, negative, or no effects on housing sale prices. The proximity of BMPs inside of parks increased housing sale prices in all buffers. In contrast, the proximity of BMPs outside of parks and impervious roads decreased housing sale prices in all buffers. Percent tree canopy coverage negatively linked to a 50 m buffer and had no relationship with other buffers on housing sale prices. This study implies that BMPs impact housing prices and can be improved by landscape architects, policymakers, and stakeholders.
Introduction: Economic evaluation of soil subgrade improvement using sugarcane bagasse ash case study: Propal Road- La Caba & ntilde;a Sugar Mill, developed at the Pontifical Javeriana University of Cali in 2022. Problem: Tertiary roads in Colombia are essential for mobility in rural areas and for the sugar industry, which generates waste such as sugarcane bagasse ash (SGBA). Objective: To present the results of the economic and technical feasibility study of using sugarcane bagasse ash for soil improvement in tertiary roads. Methodology: Characterization tests of natural soil state and modified Proctor, expansion index, CBR, and unconfined compression for stabilized soils at percentages of 5, 10, 15, and 20% of SGBA are carried out. Results: The mechanical properties of the soil improve with additions of ash between 5% and 15%; however, the utilization of 15% of SGBA is proposed to favor the disposal of a significant volume of this waste. Conclusion: The technical and economic feasibility of using SGBA as a promising solution to improve tertiary roads in Colombia is demonstrated. Originality: Viability of implementing sugarcane bagasse ash on rural roads of sugar mills and agricultural areas with production of this type of waste. Limitations: Similar studies should be carried out for each region to confirm the appropriate percentage for subgrade stabilization using SGBA.
Soil freezing is observed throughout almost the entire forested area of the Russian Federarion in winter. The effect of negative temperatures on dusty-clay soils causes a number of adverse processes that change the properties of the soils themselves. One of the most unfavorable of these processes is the accumulation of moisture in soils under the influence of the movement of the freezing front. When freezing, water-saturated clay soils increase dramatically in volume. This leads to the appearance of frost heaving in the active zone of the forest roadbed, which has an extremely adverse effect on the structure of the entire pavement and can lead to damage to the pavement with a sharp deterioration in the transport and operational qualities of forest roads. To combat frost heaving, it is necessary to study the patterns of changes in the water-thermal regime of road structures. The depth of freezing of the pavement and the roadbed is of the greatest importance for predicting frost heaving and developing measures to combat this phenomenon. The article describes the developed system for monitoring the temperature of the road structure to a depth of 3 m and the measurement results which allow us to evaluate the temperature change at different depths from the road surface and determine the freezing depth. A total of 32 sensors have been installed with a step of 10 cm. A numerical simulation of the freezing process of the pavement and the upper part of the roadbed of a forest road has been performed, with the results compared with the indicators of field observations. Good data convergence has been revealed. According to the results of experimental studies, the freezing value has been 173 cm, and according to the results of numerical simulation - 190 cm. The average error in the results of numerical simulation of the freezing process of the pavement and the upper zone of the forest roadbed has been 8-10 % compared to the experimental data.