Bedrock-soil layer slopes (BSLSs) are widely distributed in nature. The existence of the interface between bedrock and soil layer (IBSL) affects the failure modes of the BSLSs, and the seismic action makes the failure modes more complex. In order to accurately evaluate the safety and its corresponding main failure modes of BSLSs under seismic action, a system reliability method combined with the upper bound limit analysis method and Monte Carlo simulation (MCS) is proposed. Four types of failure modes and their corresponding factors of safety (Fs) were calculated by MATLAB program coding and validated with case in existing literature. The results show that overburden layer soil's strength, the IBSL's strength and geometric characteristic, and seismic action have significant effects on BSLSs' system reliability, failure modes and failure ranges. In addition, as the cohesion of the inclination angle of the IBSL and the horizontal seismic action increase, the failure range of the BSLS gradually approaches the IBSL, which means that the damage range becomes larger. However, with the increase of overburden layer soil's friction angle, IBSL's depth and strength, and vertical seismic actions, the failure range gradually approaches the surface of the BSLS, which means that the failure range becomes smaller.
The reasonable value of good gradation characteristic parameters is key in designing and optimising soil-rock mixed high fill embankment materials. Firstly, the DJSZ-150 dynamic-static large-scale triaxial testing instrument was used for triaxial compression shear tests on compacted skeleton structure soil-rock mixture standard specimens. The changes in strength and deformation indicators under different gradation parameters and confining pressure were analysed. Then, based on the Janbu empirical formula, relationships between parameters K, n, and (sigma 1-sigma 3)ult and the coefficient of uniformity Cu and coefficient of curvature Cc were explored. Empirical fitting formulas for Duncan-Chang model constants a and b were proposed, establishing an improved Duncan-Chang model for soil-rock mixtures considering gradation characteristics and stress states. Finally, based on significant differences in particle spatial distribution caused by gradation changes, three generalised models of matrix-block stone motion from different particle aggregation forms were proposed. Results indicate the standard specimen's strength and deformation indicators exhibit significant gradation effects and stress-state correlations. The improved Duncan-Chang model effectively simulates the stress-strain relationship curve under different gradations and confining pressure, with its characteristics explainable based on the matrix block stone motion generalised model.
Root-knot nematodes (RKN) severely reduce watermelon yields worldwide, despite its nutraceutical value. This study investigated the effects of rock dust (RD) and poultry manure (PM) amendments, applied singly or in combination, on RKN suppression and watermelon fruit yield enhancement. A two-trial field experiment was conducted utilizing a randomized complete block design with three replicates. The treatments included RD and PM each applied at 0, 2.5, or 5 t/ha and combined applications of RD and PM at 2.5 or 5 t/ha each. At 60-66 days post-inoculation, root galling and RKN population density were assessed alongside root-shoot weight. The results indicated that root galling in watermelons was reduced by 60-85 % and 67-89 % in the combined RD- and PMtreated plots across the 1st and 2nd trials, respectively, in contrast to the control plots. Likewise, the RKN population was suppressed by 94-99 % in treated plots in both trials, differing from the control plots. Notably, watermelon fruit yield was significantly higher (p < 0.05) in combined RD and PM treated plots, ranging from 24.7 to 33.7 t/ha and 34.6-46.5 t/ha in the 1st and 2nd trials, respectively, compared to control plots with 13.5 t/ha in the 1st trial compared to and 20.9 t/ha yield in the 2nd trial. In conclusion, our study indicates that coapplication of RD and PM effectively reduced RKN damage and enhanced watermelon fruit yield, providing a sustainable strategy for watermelon production.
The effective dynamic viscosity of a soil-rock mixture (S-RM) serves as a essential parameter for simulating flowlike landslides in the context of fluid kinematics. Accurate measurement of this viscosity is significant for understanding the remote sustainability and rheological properties of landslide hazards. This study presents a method for determining dynamic viscosity, incorporating experimental measurements and numerical inversion. The experiment involves monitoring the movement of S-RMs with varying water content and rock block concentration, followed by the calculation of centroid displacements and velocities using digital image processing. The power-law model, combined with computational fluid dynamics, effectively captures the flow-like behavior of the S-RM. A grid search method is then employed to determine the optimal parameters by comparing the predicted centroid displacement with experimental results. A series of flume experiments were conducted, resulting in the observation of spatial mass distribution and centroid displacement variations over time during soil-rock movement. The dynamic viscosity model of the S-RM is derived from the experimental data. This dynamic viscosity model was then employed to simulate an additional flume experiment, with the results demonstrating excellent agreement between the simulated and experimental centroid displacements. Sensitivity analysis of the dynamic viscosity model indicates a dependence on shear rate and demonstrates a high sensitivity to water content and rock block concentration, following a parabolic trend within the measured range. This research contributes to the fields of geotechnical engineering and landslide risk assessment, offering a practical and effective method of measuring the dynamic viscosity of S-RM. Future research could explore additional factors influencing rheological behavior and extend the applicability of the proposed method to different geological environments.
To study the degree of strength parameter deterioration (DSPD) of Lushi swelling rock in the high slope area under wetting-drying cycles, 114 samples are remodeled. Wetting-drying cycle and triaxial tests are conducted to comprehensively analyze the influence of dry density, wetting-drying cycle path, and number of wetting-drying cycles on the strength deterioration characteristics of Lushi swelling rock. Using the fitting analysis and function superposition methods, the DSPD model of Lushi swelling rock under wetting-drying cycles is established, which considers the previous four influencing factors. The influence of the DSPD of Lushi swelling rock on the stability of high slopes under rainfall seepage and circulation conditions is studied. Lushi swelling rock exhibits significant strength deterioration characteristics under wetting-drying cycles. The overall DSPD for cohesion is higher than that of the internal friction angle. Under rainstorm conditions, strength deterioration leads to a shallower depth of the critical slip surface of the slope and a smaller safety factor. After eight rounds of rainfall seepage and circulation, the safety factor gradually decreases by approximately 14%-28%. This study provides and verifies the DSPD model of Lushi swelling rock under wetting-drying cycles, and the results could provide a basis for disaster prediction and the optimization design of swelling rock slopes.
Recent studies have highlighted the potential benefits of allowing inelastic foundation response during strong seismic shaking. This approach, known as rocking isolation, reduces the moment at the base of the column by transferring the plastic joint beneath the foundation and into the soil bed. This mechanism acts as a fuse, preventing damage to the superstructure. However, structures with a low static safety factor against vertical loads (FSv) may experience unacceptable settlements during earthquakes. To address this, shallow soil improvement is proposed to ensure sufficient safety and mitigate risks. In this study, a small-scale physical model of a foundation and structure (SDOF model, n = 40) was placed on dense sandy soil, and seismic loading was simulated using lateral displacement applied by an actuator. A group of short-yielding piles with varying bearing capacities (QU/NU = 0.1-0.8) was installed beneath the rocking foundation. The results of the small-scale tests demonstrate that the use of short-yielding piles during seismic loading reduces the settlement of the shallow foundation by up to 50% and increases rotational damping by 59%. This is achieved through the frictional yielding of the pile wall and the yielding of the pile tip, which dissipate energy and enhance the overall seismic performance of the foundation. The findings suggest that incorporating yielding pile groups in the design of rocking foundations can significantly improve their seismic performance by reducing settlement and increasing energy dissipation, making it a viable strategy for enhancing the resilience of structures in earthquake-prone areas. The optimal bearing capacity ratio (QU/NU = 0.25-0.5) provides a straightforward guideline for designing cost-effective seismic retrofits.
An integrated constitutive model has been developed for rock-like materials, incorporating confinement-sensitive damage and bi-mechanism plasticity. The model aims to improve the capability of the conventional damage model in depicting the strengthening and brittle-to-ductile transitions that occur under both active and passive confinement conditions. A thermodynamic analysis of energy transformation and dissipation, considering both damage and plasticity, underpins the model's development. The model, rooted in damage-plastic theory, has been divided into two sub-models: (1) Confinement-Sensitive Model: This sub-model addresses the strengthening and ductility enhancements due to active confinement stress. It effectively captures the mechanical responses of rock-like materials under various levels of active confining stresses. (2) Endochronic Dilatancy Model: Based on endochronic theory, a separate dilatancy strain model is proposed, which effectively facilitates the interplay between lateral dilatancy and the growth of passive confining stress. Both sub-models, as well as the integrated model, have undergone validation using experimental data, including uniaxial tests, cyclic loading tests, actively confined tests, and passively confined tests of rock-like materials. These validations confirm the model's accuracy and reliability in predicting the mechanical behavior of rock-like materials under complex loading conditions.
Soil-rock mixtures are composed of a complex heterogeneous medium, and its mechanical properties and mechanism of failure are intermediate between those of soil and rock, which are difficult to determine. To consider the influence of different particle groups on soil-rock mixture's shear strengths, based on the mesomotion properties of the particles of different particle groups when the soil-rock mixture is deformed, it is classified into two-phase composites, matrix and rock mass. In this paper, based on the representative volume element model of soil-rock mixtures and the Eshelby-Mori-Tanaka equivalent contained mean stress principle, a model of shear constitutive of the accumulation considering the mesoscopic characteristics of the rock is established, the influence of different factors on the shear strength of the accumulation is investigated, and the mesoscopic strengthening mechanism of the rock on the shear strength of the accumulation is discussed. The results show that there is a positive correlation between the rock content, the surface roughness of the rock, the stress concentration coefficient, coefficient of average shear displacement, and the accumulation's shear strength. When the accumulation is deformed, it stores or releases additional energy than the pure soil material, so it shows an increase in deformation resistance and shear strength on a macroscopic scale.
Creep, once considered an inherent characteristic of granular materials, is primarily governed by time and the current stress state. However, recent studies indicate that creep development is also influenced by the loading history. To better reveal the creep revolution law of the rockfill under the influence of loading history such as historical stress rates, creep tests were conducted under oedometric loading. Alternative loading-creep steps, different stress increment sizes, and various precreep stress rates were considered. Independent of other factors, the development of the creep rate was governed by the recent precreep stress rate (the prior stress rate defined in this study). When the prior stress rate was higher than a threshold value, the relationship between the creep rate and time was double logarithmic linear; thus the creep strain-time relationship tended to converge on a power law (referred to as the creep baseline herein). However, when the prior stress rate was lower than the threshold value, the initial creep rate was lower than that of the creep baseline and did not decrease until several minutes after the start of the creep. The development of the creep rate with time in the initial stage can be generalized as a straight horizontal line, suggesting that the rate remains almost unchanged for a certain time, until the straight horizontal line approached the creep baseline. The inheritance and hysteresis of different strain rates in the initial stage of subsequent creep resulted in differences in the creep magnitude and time development process of the creep rate. The above findings are constructive for predicting the deformation of deep layers of rockfill, such as embankments, with more accuracy, especially for that with some large-sized rigid-structure buildings on its surface.
Transversely isotropic rocks (TIRs) are widespread in geological formations, and understanding their mechanical behavior is crucial for geotechnical and geoengineering applications. This study presents the development of a novel analog material that reproduces the directional mechanical properties of TIRs. The material is composed of quartz sand, mica flakes, and gelatin in adjustable proportions, allowing control over strength and stiffness anisotropy. Uniaxial compressive strength (UCS) and direct shear tests were conducted to evaluate mechanical responses across different anisotropy angles. Results show that the analog material replicates key features of natural TIRs, including directional variations in strength and fracture modes. In UCS tests, the anisotropy angle (beta) governs the transition between tensile and shear failure. In direct shear tests, the orientation angle (alpha) significantly affects shear strength. Higher gelatin concentrations increase cohesion and Young's modulus without changing the internal friction angle, while mica content reduces overall strength and stiffness. Comparisons with published data on sedimentary and metamorphic rocks confirm the mechanical representativeness of the material. Its simplicity, tunability, and reproducibility make it a useful tool for scaled physical modeling of anisotropic rock behavior in the laboratory. This approach supports the experimental investigation of deformation and failure mechanisms in layered rock masses under controlled conditions.