The current investigation examines the fluctuating behaviour of stiff pavement built on a two-parameter base and is influenced by aircraft loading impacts. This investigation is driven by the necessity for an accurate evaluation of pavement behaviour under elevated stress scenarios caused by aircraft, which can guide pavement design and upkeep. A stochastic numerical model, the vehicle-pavement interaction model (VPI), was created using a comprehensive 3D dynamic model of an aircraft vehicle and stationary runway roughness profiles. The rigid pavement is simulated using a computationally efficient 1D finite element mathematical model incorporating six DOF. The Pasternak model represents the soil medium, incorporating shear interaction between the spring elements. The pavement's irregularities are considered and replicated using a power spectral density (PSD) function. This assembled model was used to investigate the dynamical reaction of concrete pavement vibrations caused by the passing of an aircraft vehicle using MATLAB code. The dynamic governing differential equations of the aircraft's motion are developed and coupled with the pavement system equations. The coupled system is then solved in the time domain using the direct computational integration approach with the Newmark-Beta integration scheme, explicitly utilizing the linear average acceleration method. This approach is employed to resolve the equations that govern and assess the performance of the connected system. The current findings are being compared to existing analytical outcomes to verify the precision of the current coding. The research examined the impact of various pavement and aircraft vehicle behaviors and factors on the dynamic response of pavement, including the speed, main and auxiliary suspension components, mass and the load position of the aircraft, also the damping, random roughness, thickness, span length and elastic constant of the pavement, even, the modulus of subgrade of the foundation, the rigidity modulus of the shear layer. The findings demonstrate notable influences of aircraft speed and pavement surface roughness on various response parameters. Specifically, the results reveal that a higher subgrade modulus leads to decreased deflection, rotation, and bending moments. Conversely, longer span lengths tend to elevate response parameters while simultaneously reducing shear force. In conclusion, the results highlight the significance of critical factors, including velocity and subgrade modulus, in forecasting the performance of pavement subjected to aircraft loads. The present research is confined to the investigation of the dynamic's performance of the VPI simulation of airfield rigid pavement. The findings from this study can be expanded on by paving engineers to improve the structural effectiveness and reliability of the pavement, serving as a basis for subsequent fatigue analysis in response to diverse dynamic loads such as earthquake, temperature and vehicle load.
Maintaining desired subgrade performance is an effective way to reduce runway pavement deterioration. Due to lack of extensive field test data, life-cycle performance of runway subgrade has not been fully understood. In order to quantitatively estimate subgrade condition, a novel method of evaluating subgrade performance was developed and validated using the 726 sets of Heavy Weight Deflectometer (HWD) test data of ten runway sections. Statistical analysis demonstrates that the structural behaviour of rigid runway subgrade follows normal distribution in different service stages and can be efficiently evaluated by the subgrade performance index (psi). The results of factor analysis show that Accumulated Air Traffic Volume (ATV) during service life is the major cause of spatial variations in subgrade condition. In the designed service period of runway, it validates that sea-reclaimed subgrade results in faster degradation in the initial stage of service life while thicker pavement exhibits better capability in protecting the subgrade soil in long-term view. Besides, the differences in applied loads and pavement thickness give rise to the subgrade performance variation in longitudinal direction. Meanwhile, the comparison between the main and the less trafficked test lines in transversal direction reveals that the aircraft impacts play a positive role in resisting the natural fatigue process. By the suggested method, subgrade performance of HWD test points can be categorized into 4 levels from Excellent, Good, Fair to Poor based on psi value. It is helpful for airport agency to make scientific decisions on Maintenance and Rehabilitation (M&R) treatment by calculating the effective area of envelope (beta) using the ratio of subgrade performance (eta).
Climate warming leads to the aggravation of infrastructures and environmental risks in permafrost regions. There are few reports about the interaction between airport runway and permafrost foundation. Based on long term field monitoring, remote sensing and comparative analysis approaches, our study quantitatively investigates the impacts of runway and climate on permafrost in northernmost China, and also the engineering problems are analyzed. Results show that the atmospheric inversion in winter controls the regional permafrost distribution in the study area. Ground surface warmed significantly after vegetation removal because of the runway construction. The maximum temperature difference among the forest, the swamp and the bared gravel can reach to 30 degrees C in summer. Such surface alterations caused abnormally rapid degradation of permafrost within the context of climate warming. The rate of permafrost table deepening varies from 0.461 to 0.590 m/a over the 2007-2017 periods. Also, the annual mean ground temperature at the 13 m depth increased at a rate of 0.054-0.130 degrees C /a. Its annual increase value is 0 similar to 0.47 degrees C with an average 0.108 +/- 0.124 degrees C. In turn, permafrost degradation caused runway safety problems, such as the decrease of bearing capacity, increase of longitudinal slope, decrease of planeness, pavement cracks, density decrease of the foundation and cement concrete pavement cavity. However, in the natural places, the permafrost remained relatively stable and didn't show a continued degradation trend. The permafrost table fluctuated with air temperature changes. Its interannual fluctuation range is 0 similar to 0.25 m, with an average 0.08 +/- 0.08 m. The interannual fluctuation range of ground temperature at the depth of 13 m is 0.01 similar to 0.10 degrees C, with an average 0.06 +/- 0.03 degrees C. In addition, the zero curtain phenomena were observed at the study site. Once the zero curtain periods were over, the ground temperature warmed rapidly. These findings have positive implication for new runway design in permafrost regions.
Rising temperatures due to climate change can significantly impact the freeze-thaw condition of airport pavements in cold regions. This case study investigates the implications of warming temperatures on the freeze-thaw penetration and frost heave of pavements in critical airports across Canada. To this end, different methods were used in the quantification process through climate change simulations considering emission scenario RCP8.5 in 20 and 40 year time horizons. The results show that climate change would have different design implications for airport pavements, depending on their location. The predictions suggest a shallower frost penetration depth, and possibly less frost heave, for the airports not underlain by permafrost, while airports over permafrost areas might experience an increase in thickness of the active layer, ranging from 41 to 57 percent, by 2061. Among the different methods used in this study, it was observed that some methods performed better in predicting the frost depth of fine soils, while others worked better in the frost depth prediction of coarse soils. The results indicate the need for more mechanistic models to provide a more realistic prediction of freeze-thaw penetration, as compared to existing empirical models.