Rapid Arctic warming is expected to result in widespread permafrost degradation. However, observations show that site-specific conditions (vegetation and soils) may offset the reaction of permafrost to climate change. This paper summarizes 43 years of interannual seasonal thaw observations from tundra landscapes surrounding the Marre-Sale on the west coast of the Yamal Peninsula, northwest Siberia. This robust dataset includes landscape-specific climate, active layer thickness, soil moisture, and vegetation observations at multiple scales. Long-term trends from these hierarchically scaled observations indicate that drained landscapes exhibit the most pronounced responses to changing climatic conditions, while moist and wet tundra landscapes exhibit decreasing active layer thickness, and river floodplain landscapes do not show changes in the active layer. The slow increase in seasonal thaw depth despite significant warming observed over the last four decades on the Yamal Peninsula can be explained by thickening moss covers and ground surface subsidence as the transient layer (ice-rich upper permafrost soil horizon) thaws and compacts. The uneven proliferation of specific vegetation communities, primarily mosses, is significantly contributing to spatial variability observed in active layer dynamics. Based on these findings, we recommend that regional permafrost assessments employ a mean landscape-scale active layer thickness that weights the proportions of different landscape types.
2023-04-29 Web of ScienceIt is proposed to build a high-speed railway through the China -Mongolia -Russia economic corridor (CMREC) which runs from Beijing to Moscow via Mongolia. However, the frozen ground in this corridor has great impacts on the infrastructure stability, especially under the background of climate warming and permafrost degradation. Based on the Bayesian Network Model (BNM), this study evaluates the suitability for engineering construction in the CMREC, by using 21 factors in five aspects of terrain, climate, ecology, soil, and frozen-ground thermal stability. The results showed that the corridor of Mongolia's Gobi and Inner Mongolia in China is suitable for engineering construction, and the corridor in Amur, Russia near the northern part of Northeast China is also suitable due to cold and stable permafrost overlaying by a thin active layer. However, the corridor near Petropavlovsk in Kazakhstan and Omsk in Russia is not suitable for engineering construction because of low freezing index and ecological vulnerability. Furthermore, the sensitivity analysis of influence factors indicates that the thermal stability of frozen ground has the greatest impact on the suitability of engineering construction. These conclusions can provide a reference basis for the future engineering planning, construction and risk assessment.
2023-04-01 Web of ScienceAs one of the best indicators of the periglacial environment, ice-wedge polygons (IWPs) are important for arctic landscapes, hydrology, engineering, and ecosystems. Thus, a better understanding of the spatiotemporal dynamics and evolution of IWPs is key to evaluating the hydrothermal state and carbon budgets of the arctic permafrost environment. In this paper, the dynamics of ground surface deformation (GSD) in IWP zones (2018-2019) and their influencing factors over the last 20 years in Saskylakh, northwestern Yakutia, Russia were investigated using the Interferometric Synthetic Aperture Radar (InSAR) and Google Earth Engine (GEE). The results show an annual ground surface deformation rate (AGSDR) in Saskylakh at -49.73 to 45.97 mm/a during the period from 1 June 2018 to 3 May 2019. All the selected GSD regions indicate that the relationship between GSD and land surface temperature (LST) is positive (upheaving) for regions with larger AGSDR, and negative (subsidence) for regions with lower AGSDR. The most drastic deformation was observed at the Aeroport regions with GSDs rates of -37.06 mm/a at tower and 35.45 mm/a at runway. The GSDs are negatively correlated with the LST of most low-centered polygons (LCPs) and high-centered polygons (HCPs). Specifically, the higher the vegetation cover, the higher the LST and the thicker the active layer. An evident permafrost degradation has been observed in Saskylakh as reflected in higher ground temperatures, lusher vegetation, greater active layer thickness, and fluctuant numbers and areal extents of thermokarst lakes and ponds.
2023-03-01 Web of ScienceArctic zone of the Russian Federation (AZRF) is the region of intensive economic development. In this regard, it is critical to give an adequate assessment of natural factors that may have a negative impact on the growing technological infrastructure. Rapid climate change effects show a significant influence on this activity, including the railway network development. Hence, the decision-making community requires relevant information on climatic variations that can put at hazard the construction and operation of railway facilities. This paper presents the analysis of climatic changes within the region of Central and Western Russian Arctic in 1980-2021. It was performed using the new electronic Atlas of climatic variations in main hydrometeorological parameters, created for the Russian Railways in 2023. This geoinformatic product includes about 400 digital maps reflecting the variability of seven climatic parameters over more than four decades within the studied region. These parameters are air temperature, total precipitation, wind speed, soil temperature, soil moisture content, air humidity, and snow cover thickness. The analysis of climatic maps and their comparison between selected periods showed spatial and temporal heterogeneity of climatic variations in this region. This justifies the feasibility of further research using additional analytical instruments, such as Hovm & ouml;ller diagrams, time series graphs, etc. The implementation of advanced geoinformatic products in the practice of the Russian Railways will facilitate sustainable development of its infrastructure in rapidly altering climatic conditions.
2023-01-01 Web of ScienceThis is an attempt to predict the potential economic impacts on public infrastructure upon degrading permafrost which is losing its bearing capacity. Climate change-related increases in costs (economic losses or damage) are estimated for several climate futures by 2050 separately for 39 municipalities located in the Russian Arctic permafrost domain. The hypothetical changes in mean annual ground temperature are inferred from air and ground temperature trends and monitoring data, with reference to forecasts of the Climate Center of the Russian Meteorological Service (Roshydromet) and climate change scenarios (representative concentration pathways RCP2.6, RCP4.5, and RCP8.5). The calculations were performed for twelve possible cases with different air ground temperature assumptions, with regard to the difference between the ground and air mean annual temperatures. This difference, or temperature shifts, due to radiation, snow, vegetation, and atmospheric precipitation effects, was estimated either by means of calculations proceeding from possible changes of climate variables or by summation of known values reported from different Arctic areas. The economic losses were evaluated as maximum and minimum values at extreme values of permafrost parameters, separately for each case. The buildings and facilities on permafrost were assumed to have pile foundations with friction piles. The permafrost thaw impact was meant as the loss of the soil capacity to bear the support structures for the infrastructure leading to deformation and failure. The impact was considered significant if the change exceeded the safety margin according to the Russian Building Code. The greatest damage is expected to housing stock and buildings and structures of main economic sectors. The monetary value of the residential infrastructure was estimated using a specially compiled inventory database including address, age, and surface area of 23.900 houses in 39 selected Russian Arctic municipalities over a total area of 44.600 km(2). The estimation of fixed assets stemmed from the assumption that their monetary value is proportional to the gross output in the respective economic sector, which, in its turn, correlates with the payroll total corrected for mean industry coefficients for different regions of Russia. The potential damage may reach up to US$ 132 billion (total) and similar to US$ 15 billion for residential infrastructure alone, which generally agrees with other estimates.
2022-05-01 Web of SciencePermafrost is an important component in hydrological processes because changes in runoff over the Arctic drainage basin cannot be well explained by changes in precipitation-related variables. However, current understanding of the influences of permafrost on hydrological dynamics is insufficient. This study investigated historical variations in permafrost conditions and their potential hydrologic effects over the Russian Arctic drainage basin. The results show that soil temperature (at 0.40 m below surface) has increased about 1.4 degrees C over the Ob, 1.5 degrees C over the Yenisei, and 1.8 degrees C over the Lena River basin from 1936 through 2013, possibly resulted in a significant thawing of permafrost. Rapid active layer changes have occurred since the 1970s. The volume of the active layer increased by 28, 142, and 228 km(3) over the Ob, Yenisei, and Lena basins, respectively, since the 1970s. Melting ground ice caused by deepening active layer may be a limited contribution to annual runoff. Runoff during freeze season (October-April) showed significant positive correlations (p 0.05) in the Ob basin. These results imply that, in basins with high permafrost coverage, a deeper active layer increased soil water storage capacity and perhaps contribute to an increase in winter runoff.
2021-08-01 Web of ScienceKnowledge of the spatiotemporal dynamics of the soil temperature in cold environment is key to understanding the effects of climate change on land-atmosphere feedback and ecosystem functions. Here, we quantify the recent thermal status and trends in shallow ground using the most up-to-date data set of over 457 sites in Russia. The data set consists of in situ soil temperatures at multiple depths (0.8, 1.6, and 3.2 m) collected from 1975 to 2016. For the region as a whole, significant soil warming occurred over the period. The mean annual soil temperature at depths of 0.8, 1.6, and 3.2 m increased at the same level, at ca 0.30-0.31 degrees C/decade, whereas the increase in maximum soil temperature ranged from 0.40 degrees C/decade at 0.8 m to 0.31 degrees C/decade at 3.2 m. Unlike the maximum soil temperature, the increases in minimum soil temperature did not vary (ca 0.25 degrees C/decade) with depth. Due to the overall greater increase in maximum soil temperature than minimum soil temperature, the intra-annual variability of soil temperature increased over the decades. Moreover, the soil temperature increased faster in the continuous permafrost area than in the discontinuous permafrost and seasonal frost areas at shallow depths (0.8 and 1.6 m depth), and increased slower at the deeper level (3.2 m). The warming rate of the maximum soil temperature at the shallower depths was less than that at the deeper level over the discontinuous permafrost area but greater over the seasonal frost area. However, the opposite was found regarding the increase in minimum soil temperature. Correlative analyses suggest that the trends in mean and extreme soil temperatures positively relate to the trends in snow cover thickness and duration, which results in the muted response of intra-annual variability of the soil temperature as snow cover changes. This study provides a comprehensive view of the decadal evolutions of the shallow soil temperatures over Russia, revealing that the temporal trends in annual mean and extreme soil temperatures vary with depth and permafrost distribution.
2021-02-01 Web of ScienceClimate warming and anthropogenic impact causes transformation of geocryological conditions in the river basins of the North-East of Russia. Changes in the thickness of the active layer, configuration of taliks, types of landscapes and other factors lead to transformation of water exchange processes between surface and groundwater runoff. This is manifested in the seasonal redistribution of the components of the water balance, accelerated melting of aufeis, change in the ratio of waters of different genesis in the structure of river runoff. As a result, natural and anthropogenic risks that affect the safe and efficient development of infrastructure and socio-economic processes are increasing. At the same time the system of observations developed in the Soviet period has been practically destroyed in the region. This paper offers a vision of organizing complex multidisciplinary research to assess and project the changes in the conditions of underground and surface water interaction in natural and disturbed river basins of the cryolithozone of the North-East of Russia, including for solving applied problems, based on permafrost, hydrology. hydrogeology, landscape science and geophysics with applications of remote sensing and field research integrated through mathematical modeling methods. To achieve the goal, the identification of natural and disturbed landscapes using remote sensing data. and key areas for detailed research will be selected. Geophysical and drilling works will be carried out within the sites to establish permafrost-hydrogeological conditions, monitoring stations will be equipped to determine hydrogeological, hydrometeorological and geocryological characteristics, including sampling for isotopic and hydrogeochemical studies. As the main key sites, it is proposed to use the area of the Kolyma water-balance station and the site on Anmangynda aufeis, for which there are long-term observation series in the 20th century. Field data will become the basis for improving the mathematical model of runoff formation, considering the relationship between groundwater and river runoff in the conditions of permafrost. Mathematical modeling will make it possible to quantitatively analyze the water balance of rivers considering various factors and project water availability both for specific industrial facilities and for the region as a whole.
2021-01-01 Web of ScienceOur study highlights the usefulness of very high resolution (VHR) images to detect various types of disturbances over permafrost areas using three example regions in different permafrost zones. The study focuses on detecting subtle changes in land cover classes, thermokarst water bodies, river dynamics, retrogressive thaw slumps (RTS) and infrastructure in the Yamal Peninsula, Urengoy and Pechora regions. Very high-resolution optical imagery (sub-meter) derived from WorldView, QuickBird and GeoEye in conjunction with declassified Corona images were involved in the analyses. The comparison of very high-resolution images acquired in 2003/2004 and 2016/2017 indicates a pronounced increase in the extent of tundra and a slight increase of land covered by water. The number of water bodies increased in all three regions, especially in discontinuous permafrost, where 14.86% of new lakes and ponds were initiated between 2003 and 2017. The analysis of the evolution of two river channels in Yamal and Urengoy indicates the dominance of erosion during the last two decades. An increase of both rivers' lengths and a significant widening of the river channels were also observed. The number and total surface of RTS in the Yamal Peninsula strongly increased between 2004 and 2016. A mean annual headwall retreat rate of 1.86 m/year was calculated. Extensive networks of infrastructure occurred in the Yamal Peninsula in the last two decades, stimulating the initiation of new thermokarst features. The significant warming and seasonal variations of the hydrologic cycle, in particular, increased snow water equivalent acted in favor of deepening of the active layer; thus, an increasing number of thermokarst lake formations.
2020-12-01 Web of ScienceThe Global Climate Observing System and Global Terrestrial Observing Network have identified permafrost as an 'Essential Climate Variable,' for which ground temperature and active layer dynamics are key variables. This work presents long-term climate, and permafrost monitoring data at seven sites representative of diverse climatic and environmental conditions in the western Russian Arctic. The region of interest is experiencing some of the highest rates of permafrost degradation globally. Since 1970, mean annual air temperatures and precipitation have increased at rates from 0.05 to 0.07 degrees C yr(-1) and 1 to 3 mm yr(-1) respectively. In response to changing climate, all seven sites examined show evidence of rapid permafrost degradation. Mean annual ground temperatures increases from 0.03 to 0.06 degrees C yr(-1) at 10-12 m depth were observed in continuous permafrost zone. The permafrost table at all sites has lowered, up to 8 m in the discontinuous permafrost zone. Three stages of permafrost degradation are characterized for the western Russian Arctic based on the observations reported.
2020-04-01 Web of Science