Climate change is causing significant damage to crop production in the central plateau zone of Rwanda, particularly affecting sorghum, food, and the incomes of smallholder farmers. Understanding farmers' perceptions and the factors impacting their responses is crucial for improving sorghum production policies and programs. Therefore, a study was conducted to assess sorghum farmers' perceptions of climate change and the factors determining their adaptation strategies. A multistage sampling method and a cluster random selection were utilized to select 345 respondents from five districts of the study area. The data were analyzed using descriptive statistics and a multivariate probit model. The results showed that 98.8% of farmers were aware of climate change, with deforestation being the main anthropogenic activity causing it. Consequently, 95.7% and 84.3% of farmers experienced grain yield reductions, and over 20 sorghum varieties disappeared. To address these impacts, farmers adopted five adaptation strategies: early maturing sorghum varieties (67%), adjusting planting dates (50.1%), drought-tolerant varieties (46.7%), soil conservation practices (38.3%), and crop diversification (32.8%). The multivariate probit model results showed the age and literacy level of the household head, access to extension services, access to information, access to credit, farming experience, and land size as the important factors influencing at least one of the climate change adaptation strategies. The study concluded that sorghum farmers are aware of the impacts of climate change and are acting to address its negative effects. The results suggest that the government and stakeholders should support farmers in strengthening their adaptation strategies for sustainable sorghum production.
Biochar (B) has low nutrient content and is recalcitrant to biodegradation. Supplementing B with a fast-releasing nutrient source may improve soil fertility and physical conditions and increase crop productivity. A three-season field study was conducted on sandy loam and sandy clay loam textured soils to investigate the effect of B mixed with livestock manure (LM) on soil properties (pH, organic carbon (OC), cation exchange capacity (CEC), total Nitrogen (TN), available Phosphorus (Avail P)), and French bean yield (Phaseolus vulgaris L.) in Rwanda. The study used a factorial randomized block design with four replications. Treatments comprised three levels of B (0, 1, and 3 t/ha) and three levels of LM (0, 1, and 3 t/ha). Biochar was used from S. sesban, G. sepium, A. angustissima, Eucalyptus, and Grevillea sp., prepared using a drum kiln, while LM was prepared using the pit method. The Analysis of Variance (ANOVA), Tukey (HSD) function at p < 0.05, and linear mixed-effects model were performed in R software version 4.3.3 (R Core Team, 2024). The analysis showed that the treated plots significantly increased French bean yield compared to the control plots, with the highest value found in plots treated with 3 t/ha. The combined plots showed an increased yield compared to sole Biochar or manure. The seasonal increase has been observed, with percentage increases recorded as follows: 16%, 33.56%, 173.06% in sole B plots; 40.28%, 14.43%, and 11.76% in sole LM plots and 125%, 156%, and 209.8% in B + LM plots for season 1, 2, and 3, respectively. Furthermore, the results indicated that the application of B alone or combined with LM significantly enhanced soil pH, OC, TN, avail P, and CEC with the pH ranging from 6.77 to 5.43 for B alone, 6.7-5.35 for LM alone, 8.53-6.06 for B-LM plots, and 4.34-3.78 for control plots. Applying Biochar, either alone or in combination with LM, at a low rate demonstrated positive effects on French bean yield and soil nutrients in smallholder farmers. This study encourages using natural materials such as B and LM to improve soil fertility and increase vegetable production while reducing chemical fertilizers that can cause pollution and damage the environment.
On 26th May 2021, an earthquake with a moment magnitude M(w )5.1 hit the densely populated cities of Gisenyi (Rwanda) and Goma (D.R. Congo) which sit on the active East African Rift System. It was one of the largest earthquakes associated with the 2021 Mount Nyiragongo eruption. Although of moderate magnitude, the earthquake substantially damaged manmade structures. This paper presents field observations on the geotechnical impact, building damage, and factors contributing to the heightened destruction caused by this moderate earthquake. The damage pattern observed in the field indicates that masonry structures with inadequate seismic detailing were the most damaged buildings. In addition, the statistical analysis of the damaged buildings indicates most of the damaged structures were located in plains covered by volcanic soil. The intensity of the waves was estimated using the building damage data based on the European Macroseismic Scale (EMS-98). An intensity distribution map was generated for the surveyed area, suggesting EMS-98 intensity of VIII or IX along the eastern basin boundary fault and VII around the cities of Goma and Gisenyi where the land is composed of black cotton soil of volcanic origin. The higher intensity values along the eastern basin-bounding fault indicate that a reevaluation of the seismic hazard for the region is necessary. Since this is the first-ever such damage survey for the region, the developed intensity map can be used to understand the correlation between the intensity of the ground motion and damage severity which contributed to the seismic hazard assessment of the study area.