共检索到 2

Damage to buried pipes under seismic landslide actions has been reported in many post-earthquake reconnaissance. The landslide-pipe problem in the technical literature has been often investigated using simplified analytical methods. However, the analytical methods ignore the real mechanism of pipe response under natural dynamic slope instability. The dynamic slope instability is significantly influenced by its lateral boundary interface (LBI) characteristics. In this study, slope-pipe interaction (SPI) under seismic loading, focusing on the effect of LBI properties, is evaluated by continuum numerical simulation using the SANISAND constitutive model in FLAC3D. The results show that the geometry of the failure mass varies from 2D to 3D by increasing the stiffness at the slope boundaries (from smooth to hard) and the maximum pipe deformation decreases by around 40%. Moreover, the response components of maximum axial stress, bending moment, and shear stress of the pipe occur at the end sections of the buried pipe and near the boundaries of the landslide zone. However, the maximum pipe deflection occurs in the middle of the pipe. The results of shear force-shear displacement curves demonstrate that the soil-pipe interaction stiffness is variable along the pipe length and can be estimated by a hyperbolic equation.

期刊论文 2024-11-01 DOI: 10.1080/15732479.2024.2363834 ISSN: 1573-2479

In seismic regions both in Iran and around the world, subterranean gas pipelines inevitably extend through highrisk areas prone to seismic landslides. The seismic landslide-pipe failure mechanism constitutes a continuum geomechanical challenge influenced by factors such as sliding mass configuration, pipe positioning relative to potential slope failure surfaces, and seismic input characteristics. In this study, response of steel pipeline buried in sand under seismic landslide action is analyzed by finite difference models using an advanced soil constitutive model. The numerical model is first validated based on the shaking table test results and then several dynamic analyses are performed using the selected records of the Iranian ground motions database. The outcomes of the dynamic analysis demonstrate that Arias Intensity (Ia) can be identified as an optimal intensity measure (IM) for predicting the seismic response of a slope-pipe system in terms of maximum pipe deflection, axial strain, and shear stress. Predictive models are then developed based on the optimal IM for estimating the pipe deflection, axial strain, and shear stress subjected to a seismic landslide. These proposed predictive models offer valuable insights for assessing the response of buried pipelines to seismic landslides in Iran within the framework of performance-based earthquake engineering.

期刊论文 2024-03-01 DOI: 10.1016/j.trgeo.2024.101208 ISSN: 2214-3912
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页