Siberia occupies vast areas underlain by permafrost, and understanding its land cover changes is important for ecological environmental protection in a warming climate. Based on the land cover and climate datasets, we analyzed the land cover changes and their drivers in Siberia from 1992 to 2020. The results show that (1) From 1992 to 2020, the areas of evergreen needleleaf trees and deciduous needleleaf trees in Siberia decreased by 9% and 2.5%, and the areas of grassland, shrub, cropland, and construction land increased by 1.5%, 14.2%, 2.8%, and 39.2%, respectively. Cropland expansion had the fastest rate of 1.85% in the continuous permafrost zone, and construction land expansion had the fastest rate of 3.07% in the non-permafrost zone. (2) The center of gravity of agricultural land continues to migrate to the northeast, and the center of gravity of construction land continues to migrate to the southwest. (3) The primary drivers for the land cover changes were temperature and precipitation, and active layer thickness also affected grassland, cropland, and deciduous needleleaf trees. The correlation coefficient between active layer thickness and cropland area is 0.74 in the continuous permafrost zone. The interaction between factors is mostly manifested as a two-factor enhancement, with the highest q-value of the interaction of temperature and precipitation for explanatory power. Our results suggest that climate change and permafrost degradation significantly changed land cover in Siberia. This finding deepens our understanding of the mechanisms of land cover change under the influence of permafrost degradation and provides a new perspective on the land cover changes in permafrost regions.
Siberian wildrye (Elymus sibiricus) is a xero-mesophytic forage grass with high nutritional quality and stress tolerance. Among its numerous germplasm resources, some possess superior drought resistance. In this study, we firstly investigated the physiological differences between the leaves of drought-tolerant (DT) and drought-sensitive (DS) genotypes under different field water contents (FWC) in soil culture. The results showed that, under drought stress, DT maintained a lower leaf water potential for water absorption, sustained higher photosynthetic efficiency, and reduced oxidative damage in leaves by efficiently maintaining the ascorbic acid-glutathione (ASA-GSH) cycle to scavenge reactive oxygen species (ROS) compared to DS. Secondly, using RNA sequencing (RNA-seq), we analyzed the gene expression profiles of DT and DS leaves under osmotic stress of hydroponics induced by PEG-6000. Through differential analysis, we identified 1226 candidate unigenes, from which we subsequently screened out 115/212 differentially expressed genes (DEGs) that were more quickly induced/reduced in DT than in DS under osmotic stress. Among them, Unigene0005863 (EsSnRK2), Unigene0053902 (EsLRK10) and Unigene0031985 (EsCIPK5) may be involved in stomatal closure induced by abscisic acid (ABA) signaling pathway. Unigene0047636 (EsCER1) may positively regulates the synthesis of very-long-chain (VLC) alkanes in cuticular wax biosynthesis, influencing plant responses to abiotic stresses. Finally, the contents of wax and cutin were measured by GC-MS under osmotic stress of hydroponics induced by PEG-6000. Corresponding to RNA-seq, contents of wax monomers, especially alkanes and alcohols, showed significant induction by osmotic stress in DT but not in DS. It is suggested that limiting stomatal and cuticle transpiration under drought stress to maintain higher photosynthetic efficiency and water use efficiency (WUE) is one of the critical mechanisms that confer stronger drought resistance to DT. This study provides some insights into the molecular mechanisms underlying drought tolerance in E. sibiricus. The identified genes may provide a foundation for the selection and breeding of drought-tolerant crops.
Western Siberia is exposed to extreme wind events caused by severe convective storms. However, our knowledge on such storms in Siberia is still fragmentary compared to other parts of the world primarily due to the lack of weather radar data. These storms cause substantial damage, which signifies the need for comprehensive assessment of their characteristics and predictability even on the basis of existing data. In this paper, we present a case study analysis of a severe weather outbreak that occurred on 25-26 May 2020 in Western Siberia, during a record six-month heatwave that lasted in Siberia from January to June. The outbreak resulted in six fatalities and substantial economic losses. Using various satellite data and damage reports we found that two consecutive mesoscale convective systems (MCSs) developed within the outbreak having an exceptionally long total track about 2000 km and causing large-scale forest damage with a total area of 64.5 km(2). Such an exceptionally long path was supported by a strong mid-tropospheric jet, which settled extremely high values of wind shear that fostered the development of the outbreak. To analyze the accuracy of the forecast of the MCS and three asso-ciated windstorms on 26 May, we performed a set of simulations with the COSMO and ICON numerical weather prediction models launched with convection-permitting resolution (2.2 km) with different forecast lead times. Both models successfully predicted the most severe windstorm with the 24 h lead time, this emphasized the predominant role of large-scale dynamics and the minor role of local factors in the outbreak formation and development. In particular, the intrusion of the upper tropospheric high potential vorticity streamer along the blocking periphery induced strong deep convection and determined the severe character of the outbreak. Specifically, the studied outbreak had an exceptional longevity compared to other long-lived windstorms observed in Northern Eurasia at the blocking periphery.
Invasions of dendrophagous insects pose major threats to forest ecosystems and to the timber industry. The alien species bark beetle Polygraphus proximus Blandf. of Far Eastern origin has caused Siberian fir dieback in vast areas within several regions of Russia. Rapid spread of the pest and its outbreaks raise the issue of preserving the most important functions, including carbon sequestration, by the damaged forests. In this study, monitoring of carbon pool dynamics was carried out during 2012-2023 on four sample plots showing various degrees of damage in the southern taiga zone of Western Siberia in the Larinsky Landscape Reserve. Dynamics of the forest stands' vitality were reflected in a rapid decline of the number of viable trees and an increase in amounts of deadwood, debris, and soil composition, resulting in a transformation of the natural biological carbon cycle in the native dark coniferous ecosystems.
Permafrost regions are under particular pressure from climate change resulting in wide-spread landscape changes, which impact also freshwater chemistry. We investigated a snapshot of hydrochemistry in various freshwater environments in the lower Kolyma river basin (North-East Siberia, continuous permafrost zone) to explore the mobility of metals, metalloids and non-metals resulting from permafrost thaw. Particular attention was focused on heavy metals as contaminants potentially released from the secondary source in the permafrozen Yedoma complex. Permafrost creeks represented the Mg-Ca-Na-HCO3-Cl-SO4 ionic water type (with mineralisation in the range 600-800 mg L-1), while permafrost ice and thermokarst lake waters were the HCO3-Ca-Mg type. Multiple heavy metals (As, Cu, Co, Mn and Ni) showed much higher dissolved phase concentrations in permafrost creeks and ice than in Kolyma and its tributaries, and only in the permafrost samples and one Kolyma tributary we have detected dissolved Ti. In thermokarst lakes, several metal and metalloid dissolved concentrations increased with water depth (Fe, Mn, Ni and Zn - in both lakes; Al, Cu, K, Sb, Sr and Pb in either lake), reaching 1370 mu g L-1 Cu, 4610 mu g L-1 Mn, and 687 mu g L-1 Zn in the bottom water layers. Permafrost-related waters were also enriched in dissolved phosphorus (up to 512 mu g L-1 in Yedoma-fed creeks). The impact of permafrost thaw on river and lake water chemistry is a complex problem which needs to be considered both in the context of legacy permafrost shrinkage and the interference of the deepening active layer with newly deposited anthropogenic contaminants.
The northernmost margin of the East Asian summer monsoon (NMEASM) is the northernmost position that the East Asia summer monsoon (EASM) can reach. NMEASM has obvious multi-scale variability, and well reflects the wet/dry climate variability in northern China. Predicting the location change of the NMEASM is important for understanding future East Asian climate change. However, the variability of the NMEASM has not been studied extensively, and its underlying mechanisms have not been clarified. To explore the movement of the NMEASM and its causes, we use reanalysis datasets to evaluate the NMEASM index from 1979 to 2018. The NMEASM indicates a decreasing trend over 40 years and a significant abrupt point in 2000, which is positively correlated with the Tibetan Plateau snow cover before 2000 and the Siberian snow cover after 2000 in spring. The decreased Siberian snow cover increases the soil temperature and decreases the atmospheric baroclinicity over Mongolia and northern China after 2000. The decreased atmospheric baroclinicity induces the dipole mode of anticyclonic anomaly over Mongolia and northern China and the cyclonic anomaly over the Sea of Japan by modulating the wave activity flux (WAF). The WAF's southeastward propagation strengthens the anticyclonic anomaly over Mongolia and northern China and the cyclonic anomaly over the Sea of Japan, which weakens the upward movement and water vapor transport, respectively. Hence, the decreased Siberian snow cover in spring modulates the precipitation over Mongolia and northern China and the southward movement of NMEASM by turbulent westerly circulation.
Tundra is primarily a habitat for shrub growth, not trees, but growth of prostrate forms of trees has been reported occasionally from the subarctic tundra region. In the light of on-going climate change, climate sensitivity studies of these unique trees are essential to predict vegetation dynamics and potential northward expansion of boreal forest tree species into tundra. Here we studied one of the northernmost Larix Mill. trees and Betula nana L. shrubs (72 degrees N) from the Siberian tundra for the common period 1980-2017. We took advantage of the discovery of a single cohort of prostrate Larix trees within a tundra ecosystem, i.e., ca. 60 km northwards from the northern treeline, and compared climate-growth relationships of the two species. Both woody plants were sensitive to the July temperature, however this relationship was stable across the entire study period (1980-2017) only for Betula nana chronology. Additionally, radial growth of Larix trees became negatively correlated to temperatures during the previous summer. In recent period moisture sensitivity between Larix trees and Betula nana shrubs was contrasting, with generally wetter soil conditions favoring Larix trees growth and dryer conditions promoting Betula nana growth. Our study indicates that Larix trees radial growth in recent years is more sensitive to moisture than to summer air temperatures, whereas temperature sensitivity of Betula nana shrub is stable over time. We provide first detailed insight into the annual resolution on Larix tree growth sensitivity to climate in the heart of the tundra. The potentially higher Betula nana shrub resistance to warmer and drier climate versus Larix trees on a tundra revealed in our study needs to be further examined across habitats of various soil, moisture and permafrost status.
The dendroecology of larch (Larix gmelinii Rupr.) in the world's northernmost forest provided insight into the complex relationship of tree growth, forest stand establishment, and changing eco-climatic factors. The Ary-Mas forest in the northern Siberia (72 & DEG; + NL) is an ecological island, surrounded by tundra. We hypothesized that the environmental constraints that limit larch growth in this harsh habitat include soil moisture and winter winds as well as low air temperature. We constructed and analyzed the larch growth index (GI) chronology from the eighteenth century until 2019. We found that the larch GI depended on the air temperature, soil moisture anomalies, and winter wind speed, and that dependence was significantly different before and after the 2000s. Larch GI responded to the onset of climatic warming in the 1970s by a minor GI increase followed by a GI decrease until the end of 1990. Increased air temperature early in the growing season favored increased GI, whereas elevated winter wind speed negatively influenced larch growth. After warming in the 2000s, the length of the growing season increased by 15 days, and larch GI was sensitive to air temperature both early and late in the growing season. The adverse influence of winter winds has gradually decreased since the 1970s, becoming a minor factor in the 2000s. Soil moisture in wet, cold soils negatively influenced larch growth. Meanwhile, decreased soil moisture in the northern lowlands favored increased larch growth. We found that larch growth increases were strongly correlated with GPP and NPP (gross and net primary productivity) within the Ary-Mas site and for the central Siberian Arctic. We infer that this Arctic region continues to be a carbon sink.
The Central part of the Oka Plateau lying in the East Sayan Mountains is still a poorly studied area of southern Siberia as regards its paleogeography. This gap can be partially replenished by the results of the present study. This study is focused on reconstruction of the central Oka Plateau environment in the Middle-Late Holocene. The pollen from bottom sediments of Sagan-Nur Lake provided a qualitative reconstruction of the vegetation in the catchment area of the lake as well as the quantitative reconstruction of dominant vegetation types obtained via the biomization method. The reconstruction suggests the dominance of the tundra vegetation consisting of dwarf birch, alder, and willow with patches of spruce and larch between about 8120 and 7000 cal. yr BP. The climate was sharp continental with high soil moisture resulting from summer permafrost thaw. The expansion of the forest biome began in the Central Oka Plateau at about 7000 cal. yr BP due to climate warming, hydrological network reconstruction resulting from complete thaw of regional glaciers and degradation of the permafrost rocks. Around 3200 cal. yr BP, the larch forests with the participation of Siberian pine started spreading across the Sagan-Nur Lake catchment area, thus suggesting colder conditions than before. The obtained reconstructions can help identifying the promising lakes and their catchment areas in the East Sayan Mountains for potential sustainable development through special projects (e.g., educational, tourist, environmentally protected).
Boreal forests cover over half of the global permafrost area and protect underlying permafrost. Boreal forest development, therefore, has an impact on permafrost evolution, especially under a warming climate. Forest disturbances and changing climate conditions cause vegetation shifts and potentially destabilize the carbon stored within the vegetation and permafrost. Disturbed permafrost-forest ecosystems can develop into a dry or swampy bush- or grasslands, shift toward broadleaf- or evergreen needleleaf-dominated forests, or recover to the pre-disturbance state. An increase in the number and intensity of fires, as well as intensified logging activities, could lead to a partial or complete ecosystem and permafrost degradation. We study the impact of forest disturbances (logging, surface, and canopy fires) on the thermal and hydrological permafrost conditions and ecosystem resilience. We use a dynamic multilayer canopy-permafrost model to simulate different scenarios at a study site in eastern Siberia. We implement expected mortality, defoliation, and ground surface changes and analyze the interplay between forest recovery and permafrost. We find that forest loss induces soil drying of up to 44%, leading to lower active layer thicknesses and abrupt or steady decline of a larch forest, depending on disturbance intensity. Only after surface fires, the most common disturbances, inducing low mortality rates, forests can recover and overpass pre-disturbance leaf area index values. We find that the trajectory of larch forests after surface fires is dependent on the precipitation conditions in the years after the disturbance. Dryer years can drastically change the direction of the larch forest development within the studied period.