Drought is a reoccurring natural phenomenon that presents significant challenges to agricultural production, ecosystem stability, and water resource management. The Central Highlands of Vietnam, a major region of industrial crops and vegetation ecosystems, has become increasingly vulnerable to drought impacts. Despite this vulnerability, limited research has explored the specific characteristics of drought and its seasonal effects on vegetation ecosystems in the region. This study addressed these gaps by providing a detailed analysis of recent soil moisture drought characteristics and their seasonal impacts on vegetation from 2015 to 2023 using weekly soil moisture active passive (SMAP) and moderate resolution imaging spectroradiometer (MODIS) satellite time series observations. This analysis derived the soil moisture anomaly index as a proxy to assess drought characteristics and used correlation analysis to quantify their impacts on seasonal vegetation dynamics. Our spatial analysis identified the most significant drought years in 2015 and 2019 in the study region, while the wettest conditions were detected in 2017 and 2022 over the study period. Notably, significant soil moisture deficits were observed in August and October throughout the study period, even though these months typically fall within the rainy season. On average, nearly 25 drought events were detected in the region from 2015 to 2023 due to soil moisture deficits, each lasting approximately 6 weeks. The impact of drought events on the vegetation ecosystem was seasonally pronounced in spring and winter, where droughts were notably higher. Our results provide valuable insights into informed decision-making and sustainable agricultural practices in the region. Understanding the spatial and temporal patterns of drought and its seasonal effects on vegetation can help policymakers and farmers develop targeted strategies to mitigate the adverse impacts, enhance water management practices, and promote drought-resistant crop varieties, thereby maintaining agricultural productivity and ecosystem health amidst increasing climate variability.
Accurately determining the freeze/thaw state (FT) is crucial for understanding land-atmosphere interactions, with significant implications for climate change, ecological systems, agriculture, and water resource management. This article introduces a novel approach to assess FT dynamics by comparing the new diurnal amplitude variations (DAV) algorithm with the traditional seasonal threshold algorithm (STA) based on the soil moisture active passive (SMAP) brightness temperature data. Utilizing soil temperature profiles from 44 sites recorded by the National Ecological Observatory Network between July 2019 and June 2022. The results reveal that the DAV algorithm demonstrates a remarkable potential for capturing FT signals, achieving an average accuracy of 0.82 (0.89 for the SMAP-FT product) across all sites and a median accuracy of 0.94 (0.92 for the SMAP-FT product) referring to soil temperature at 0.02 m. Notably, the DAV algorithm outperforms the SMAP-adopted STA in 25 out of 44 sites. The accuracy of the DAV algorithm is affected by daily temperature fluctuations and geographical latitudes, while the STA exhibits limitations in certain regions, particularly those with complex terrains or variable climatic patterns. This article's innovative contribution lies in systematically comparing the performance of the DAV and STA algorithms, providing valuable insights into their respective strengths and weaknesses.
Estimating the landscape and soil freeze-thaw (FT) dynamics in the Northern Hemisphere (NH) is crucial for understanding permafrost response to global warming and changes in regional and global carbon budgets. A new framework for surface FT-cycle retrievals using L-band microwave radiometry based on a deep convolutional autoencoder neural network is presented. This framework defines the landscape FT-cycle retrieval as a time-series anomaly detection problem, considering the frozen states as normal and the thawed states as anomalies. The autoencoder retrieves the FT-cycle probabilistically through supervised reconstruction of the brightness temperature (TB) time series using a contrastive loss function that minimizes (maximizes) the reconstruction error for the peak winter (summer). Using the data provided by the Soil Moisture Active Passive (SMAP) satellite, it is demonstrated that the framework learns to isolate the landscape FT states over different land surface types with varying complexities related to the radiometric characteristics of snow cover, lake-ice phenology, and vegetation canopy. The consistency of the retrievals is assessed over Alaska using in situ observations, demonstrating an 11% improvement in accuracy and reduced uncertainties compared to traditional methods that rely on thresholding the normalized polarization ratio (NPR).
The soil moisture active passive (SMAP) satellite mission distributes a product of CO2 flux estimates (SPL4CMDL) derived from a terrestrial carbon flux model, in which SMAP brightness temperatures are assimilated to update soil moisture (SM) and constrain the carbon cyclemodeling. While the SPL4CMDL product has demonstrated promising performance across the continental USA and Australia, a detailed assessment over the arctic and subarctic zones (ASZ) is still missing. In this study, SPL4CMDL net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (R-E) are evaluated against measurements from 37 eddy covariance towers deployed over the ASZ, spanning from 2015 to 2022. The assessment indicates that the NEE unbiased root-mean-square error falls within the targeted accuracy of 1.6 gC.m(-2).d(-1), as defined for the SPL4CMDL product. However, modeled GPP and R-E are overestimated at the beginning of the growing season over evergreen needleleaf forests and shrublands, while being underestimated over grasslands. Discrepancies are also found in the annual net CO2 budgets. SM appears to have a minimal influence on the GPP and R-E modeling, suggesting that ASZ vegetation is rarely subjected to hydric stress, which contradicts some recent studies. These results highlight the need for further carbon cycle process understanding and model refinements to improve the SPL4CMDL CO2 flux estimatesover the ASZ.
Soil Moisture (SM) is a key parameter in northern Arctic and sub-Arctic (A-SA) environments that are highly vulnerable to climate change. We evaluated six SM satellite passive microwave datasets using thirteen ground-based SM stations across Northwestern America. The best agreement was obtained with SMAP (Soil Moisture Active Passive) products with the lowest RMSD (Root Mean Square Difference) (0.07 m$3$3 m${-3}$-3) and the highest R (0.55). ESA CCI (European Space Agency Climate Change Initiative) also performed well in terms of correlation with a similar R (0.55) but showed a strong variation among sites. Weak results were obtained over sites with high water body fractions. This study also details and evaluates a dedicated retrieval of SM from SMOS (Soil Moisture and Ocean Salinity) brightness temperatures based on the $\tau -\omega$tau-omega model. Two soil dielectric models (Mironov and Bircher) and a dedicated soil roughness and single scattering albedo parameterization were tested. Water body correction in the retrieval shows limited improvement. The metrics of our retrievals (RMSD = 0.08 m$3$3 m${-3}$-3 and R = 0.41) are better than SMOS but outperformed by SMAP. Passive microwave satellite remote sensing is suitable for SM retrieval in the A-SA region, but a dedicated approach should be considered.
The tau -omega model is expanded to properly simulate L -band microwave emission of the soil-snow-vegetation continuum through a closed -form solution of Maxwell's equations, considering the intervening dry snow layer as a loss -less medium. The error standard deviations of a least -squared inversion are 0.1 and 3.5 for VOD and ground permittivity, over moderately dense vegetation and a snow density ranging from 100 to 400 kg m -3 , considering noisy brightness temperatures with a standard deviation of 1 kelvin. Using the Soil Moisture Active Passive (SMAP) satellite observations, new global estimates of VOD and ground permittivity are presented over the Arctic boreal forests and permafrost areas. In the absence of dense in situ observations of ground permittivity and VOD, the retrievals are causally validated using ancillary variables including ground temperature, above -ground biomass, tree height, and net ecosystem exchange of carbon dioxide. Time -series analyses promise that the new data set can expand our understanding of the land-atmosphere interactions and exchange of carbon fluxes over Arctic landscapes.
The soil freeze/thaw (FT) state has emerged as a critical role in the ecosystem, hydrological, and biogeochemical processes, but obtaining representative soil FT state datasets with a long time sequence, fine spatial resolution, and high accuracy remains challenging. Therefore, we propose a decision-level spatiotemporal data fusion algorithm based on Convolutional Long Short-Term Memory networks (ConvLSTM) to expand the SMAP-enhanced L3 landscape freeze/thaw product (SMAP_E_FT) temporally. In the algorithm, the Freeze/Thaw Earth System Data Record product (ESDR_FT) is sucked in the ConvLSTM and fused with SMAP_E_FT at the decision level. Eight predictor datasets, i.e., soil temperature, snow depth, soil moisture, precipitation, terrain complexity index, area of open water data, latitude and longitude, are used to train the ConvLSTM. Direct validation using six dense observation networks located in the Genhe, Maqu, Naqu, Pali, Saihanba, and Shandian river shows that the fusion product (ConvLSTM_FT) effectively absorbs the high accuracy characteristics of ESDR_FT and expands SMAP_E_FT with an overall average improvement of 2.44% relative to SMAP_E_FT, especially in frozen seasons (averagely improved by 7.03%). The result from indirect validation based on categorical triple collocation also shows that ConvLSTM_FT performs stable regardless of land cover types, climate types, and terrain complexity. The findings, drawn from preliminary analyses on ConvLSTM_FT from 1980 to 2020 over China, suggest that with global warming, most parts of China suffer from different degrees of shortening of the frozen period. Moreover, in the Qinghai-Tibet region, the higher the permafrost thermal stability, the faster the degradation rate.
The Mediterranean region experiences the annual destruction of thousands of hectares due to climatic conditions. This study examines forest fires in Turkiye's Antalya region, a Mediterranean high-risk area, from 2000 to 2023, analyzing 26 fires that each damaged over 50 hectares. Fire danger maps created from fire weather indexes (FWI) indicated that 85.7% of the analyzed fire areas were categorized within the high to very extreme danger categories. The study evaluated fire danger maps from EFFIS FWI and ERA5 FWI, both derived from meteorological satellite data, for 14 forest fires between 2019 and 2023. With its better spatial resolution, it was found that EFFIS FWI had a higher correlation (0.98) with in situ FWIs. Since FWIs are calculated from temperature and fire moisture subcomponents, the correlations of satellite-based temperature (MODIS Land Surface Temperature-LST) and soil moisture (SMAP) data with FWIs were investigated. The in situ FWI demonstrated a positive correlation of 0.96 with MODIS LST, 0.92 with EFFIS FWI, and 0.93 with ERA5 FWI. The negative correlation between all FWIs and SMAP soil moisture highlighted a strong relationship, with the highest observed in in situ FWI (-0.93) and -0.90 and -0.87 for EFFIS FWI and ERA5 FWI, respectively.
A number of global surface soil moisture (SM) datasets have been retrieved from the L-band frequency Soil Moisture Active Passive (SMAP) and the Soil Moisture and Ocean Salinity (SMOS) missions to study the terrestrial water, energy, and carbon cycles. This paper presents the performance of the recently developed 9 km global SMAP product (hereafter SMAP-INRAE-BORDEAUX, SMAP-IB9). The product retrieves SM from the 9 km SMAP radiometric products using the forward model (L-MEB, L-band Microwave Emission of the Biosphere) of SMOS INRA-CESBIO (SMOS-IC) and SMOS L2 algorithms. We inter-compared SMAP-IB9 with two other products with a similar grid resolution (similar to 10 km): the SMAP Enhanced Level-3 SM dataset (SMAP-E) and the enhanced global dataset for the land component of the fifth generation of European reanalysis (ERA5-Land) with the main objective of assessing the discrepancy in accuracy between remotely sensed and model SM datasets. We found that ERA5-Land and SMAP-IB9 SM had the overall highest correlations (R = 0.62(+/- 0.15) for ERA5-Land vs. 0.60 (+/- 0.17) for SMAP-IB9 and 0.50(+/- 0.15) for SMAP-E) by comparing with the International Soil Moisture Network (ISMN) in-situ measurements from 22 networks. ERA5-Land showed better performances in the forest areas where SMAP-IB9 and SMAP-E still showed high potential in detecting the time variations of the observed SM, particularly in terms of median correlation values (0.62(+/- 0.18) for SMAP-IB9 vs. 0.66(+/- 0.16) for ERA5-and). The discrepancy in R between satellite and model SM products that were reported in some past studies has decreased to statistically insignificant levels over time. For instance, in the non-forest areas, we found that the latest versions of the SMAP SM products (SMAP-E and SMAP-IB9) had relatively comparable performances with ERA5-Land with regard to median ubRMSE (0.07(+/- 0.02) m(3)/m(3) for both SMAP-E and ERA5-Land) and R (0.59 (+/- 0.16) for SMAP-IB9 vs. 0.61(+/- 0.15) for ERA5-Land), respectively.
This paper presents a convolutional autoencoder deep learning framework for probabilistic characterization of the ground freeze-thaw (FT) dynamics in the Northern Hemisphere to enhance our understanding of permafrost response to global warming and shifts in the high-latitude carbon cycle, using Soil Moisture Active Passive (SMAP) satellite brightness temperatures (TB) observations. The autoencoder recasts the FT-cycle retrieval as an anomaly detection problem in which the peak winter (summer) represents the normal (anomaly) segments of the TB time series. The results demonstrate that the new framework outperforms the widely used fixed-thresholding of the Normalized Polarization Ratio (NPR) by learning the land surface structural and radiometric complexities that might arise in TB times series due to snow cover and vegetation. Validation against ground-based measurements over Alaska shows that the accuracy of the FT-cycle retrievals can be improved by 12%, primarily due to a marked reduction in false detection of short snowmelt episodes as ground thawing by the NPR thresholding approach.