共检索到 17

Moisture intrusion into the subgrade can significantly increase its moisture content, leading to a decrease in stiffness and strength, thereby compromising the serviceability performance of the pavement. Electro-osmosis has been used as an effective method for reducing moisture content and improving subgrade mechanical properties. However, its impact on mechanical properties has not been well understood. This study evaluated the mechanical behavior of electro-osmosis-treated subgrade soil through laboratory experiments that included bender element and cyclic triaxial tests. The study analyzed the effects of supply voltage and soil compaction degree on electro-osmosis treatment. The results showed that after treatment, the shear wave velocity increased by 26.0 to 59.2%, and the dynamic resilient modulus improved by a factor of three. Increasing the supply voltage and degree of compaction was found to lead to more significant improvements. Further analysis revealed that the reduction in moisture content alone was insufficient to contribute to the improvement. Cementation of colloids generated by the electrochemical reaction between soil particles also contributed to the improvement. It is worth noting that the nonuniform distribution of moisture and colloid in electro-osmosis-treated soils resulted in heterogeneity, with soil close to the anode being the weakest in terms of mechanical strength. Chemical injection or polarity reversal was suggested to enhance the uniformity of distribution and improve the overall treatment effectiveness. Overall, the study highlights the potential of electro-osmosis as a viable method for improving the mechanical properties of subgrade soil, but further research is required to investigate the heterogeneity of the distribution of moisture and colloid.

期刊论文 2025-03-22 DOI: 10.1007/s11440-025-02570-6 ISSN: 1861-1125

The combination of vacuum electro-osmosis treatment and electrokinetic remediation allows for the simultaneous consolidation and remediation of contaminated sediments, involving multiple coupled fields such as electrical field, hydraulic field, mechanical field, and chemical field. This study couples the charge conservation, vacuum electro-osmosis consolidation, and contaminant transport equations under vacuum electro-osmosis conditions to establish a numerical model for the consolidation and remediation process. Laboratory experiments were conducted for comparative analyses. The numerical results show that the electric field intensity decays from both sides towards the center. However, the other positions align well with the experimental results, indicating the ability of the numerical model to reflect the non-uniform distribution of soil potential. The anode and cathode regions become negative pressure centers, resulting in an increasing seepage velocity towards the negative pressure centers. The numerical results accurately capture the trend of pore water pressure development before 40 h, although the absolute value obtained after 40 his slightly overestimated. Additionally, the numerical results demonstrate a 47% removal efficiency of copper at the anode after 48 h, which is consistent with the experimental results. The distribution of electric field and contaminants are affected by the shape of the electrode board.

期刊论文 2025-03-01 DOI: 10.1016/j.gete.2025.100655 ISSN: 2352-3808

Electroosmotic drainage has been proposed as a method for reducing moisture content and simultaneously increasing shear strength, thereby enhancing the stability of soft clays. Understanding electroosmotic consolidated soil behavior under wet-dry cycles is vital for assessing long-term stability and performance in a changing environment. In this investigation, electroosmosis-treated soft clay specimens were prepared and subjected to different wetting-drying cycles. The experimental results emphasized that in the case of soft clay which has been treated under identical electroosmosis conditions and subsequently subjected to varying numbers of wetting-drying cycles, it was determined that with an increment in the number of wetting-drying cycles, the crack ratio exhibits an increasing trend. However, the extent of the crack ratio exerts a minimal and almost negligible effect on the average moisture content of the soil mass. Specifically, five wetting-drying cycles can induce a pronounced reduction in the coefficient of variation (COV) of the soil moisture content distribution. Moreover, it was observed that a relatively smaller crack ratio is associated with a relatively greater average shear strength. Simultaneously, the corresponding COV will be larger. Conversely, a larger crack ratio gives rise to a smaller average shear strength, and the corresponding COV will be smaller.

期刊论文 2025-02-17 DOI: 10.1038/s41598-025-88868-7 ISSN: 2045-2322

The evaluation of thermo-hydro-mechanical (THM) coupling response of clayey soils has emerged as an imperative research focus within thermal-related geotechnical engineering. Clays will exhibit nonlinear physical and mechanical behavior when subjected to variations in effective stress and temperature. Additionally, temperature gradient within soils can induce additional pore water migration, thereby resulting in a significant thermo-osmosis effect. Indeed, thermal consolidation of clayey soils constitutes a complicated THM coupling issue, whereas the theoretical investigation into it currently remains insufficiently developed. In this context, a one-dimensional mathematical model for the nonlinear thermal consolidation of saturated clay is proposed, which comprehensively incorporates the crucial THM coupling characteristics under the combined effects of heating and mechanical loading. In current model, the interaction between nonlinear consolidation and heat transfer process is captured. Heat transfer within saturated clay is investigated by accounting for the conduction, advection, and thermomechanical dispersion. The resulting governing equations and numerical solutions are derived through assuming impeded drainage boundaries. Then, the reasonability of current model is validated by degradation and simulation analysis. Subsequently, an in-depth assessment is carried out to investigate the influence of crucial parameters on the nonlinear consolidation behavior. The results indicate that increasing the temperature can significantly promote the consolidation process of saturated clay, the dissipation rate of excess pore water pressure (EPWP) is accelerated by a maximum of approximately 15%. Moreover, the dissipation rate of EPWP also increases with the increment of pre-consolidation pressure, while the corresponding settlement decreases. Finally, the consolidation performance is remarkably impacted by thermo-osmosis and neglecting this process will generate a substantial departure from engineering practice.

期刊论文 2025-02-01 DOI: 10.1007/s11440-024-02382-0 ISSN: 1861-1125

This case study proposed a novel electro-osmosis PRD vacuum preloading method to solve dredging sludge treatment issues: difficulty in draining from soil showing large volume, non-uniform settlement, and low strength. To verify the effectiveness of the new method, four kinds of physical model tests integrating particle image velocimetry (PIV) technique of traditional vacuum preloading (VP), prefabricated radiant drain vacuum preloading (PRD-VP), electro-osmotic vacuum preloading (EO-VP), and EO-PRD-VP methods are conducted. The water discharge, average surface settlement, pore water pressure, water content, and undrained shear strength after treatment, clogging range, relationship between clogging range and water discharge rate, and relationship between clogging range and average surface settlement are investigated. For those model tests, it is demonstrated that EO-PRD-VP method has the best advantage in volume reduction, uniform settlement, and strength improvement. Water discharge is enlarged by 13-33%. The differential settlement can reach 2.3 cm, decreased by 28-56%. The undrained shear strength can reach 12 kPa, increased by 1-2 times. In addition, the clogging range development is described, for the given water discharge rate and average surface settlement, clogging range of EO-PRD-VP method is the minimum. The empirical equations between clogging range and water discharge rate, clogging range, and average surface settlement are established to predict the clogging range, which can lay the foundation for developing the consolidation theory of EO-PRD-VP method.

期刊论文 2025-01-02 DOI: 10.1080/1064119X.2024.2327651 ISSN: 1064-119X

Mining and using underground resources demand high water usage, producing significant waste with environmental risks. Methods like electrokinetics prove effective in accelerating dewatering and stabilizing structures. This research provides the results of experimental investigation on dewatering silty tailings obtained from Sungun Tailings Dam (East Azerbaijan, Iran) using the electrokinetic water recovery method. Previous studies primarily examined the electrokinetic process in steady-state flow and saturated soil, with limited exploration of unsaturated soil parameters. In this research, the electrokinetic process in steady-state flow was initially investigated, and the saturated electro-osmotic permeability was determined. Subsequently, experiments were conducted in non-steady-state flow and unsaturated conditions, measuring the influential parameters with soil moisture sensors and tensiometers. Results show that decreasing sample moisture through electro-osmotic flow increases negative pore water pressure. Tailings' electrical conductivity is more influenced by moisture content, with a steeper reduction slope concerning volumetric moisture reduction over time. pH assessments show soil acidity on the anode side and alkalinity on the cathode side. Higher applied voltage gradients result in increased maximum power consumption. Importantly, the results caution against assuming that higher applied voltage improves the electro-osmotic process, as it may lead to issues such as deep sample cracking, void space creation, interrupted electrical flow, and energy loss.

期刊论文 2025-01-01 DOI: 10.1139/cgj-2024-0069 ISSN: 0008-3674

Soil Moisture (SM) is a key parameter in northern Arctic and sub-Arctic (A-SA) environments that are highly vulnerable to climate change. We evaluated six SM satellite passive microwave datasets using thirteen ground-based SM stations across Northwestern America. The best agreement was obtained with SMAP (Soil Moisture Active Passive) products with the lowest RMSD (Root Mean Square Difference) (0.07 m$3$3 m${-3}$-3) and the highest R (0.55). ESA CCI (European Space Agency Climate Change Initiative) also performed well in terms of correlation with a similar R (0.55) but showed a strong variation among sites. Weak results were obtained over sites with high water body fractions. This study also details and evaluates a dedicated retrieval of SM from SMOS (Soil Moisture and Ocean Salinity) brightness temperatures based on the $\tau -\omega$tau-omega model. Two soil dielectric models (Mironov and Bircher) and a dedicated soil roughness and single scattering albedo parameterization were tested. Water body correction in the retrieval shows limited improvement. The metrics of our retrievals (RMSD = 0.08 m$3$3 m${-3}$-3 and R = 0.41) are better than SMOS but outperformed by SMAP. Passive microwave satellite remote sensing is suitable for SM retrieval in the A-SA region, but a dedicated approach should be considered.

期刊论文 2024-12-31 DOI: 10.1080/17538947.2024.2385079 ISSN: 1753-8947

Electroosmosis and surcharge preloading represent two effective soil consolidation methodologies. Their combined application has been proven to be effective in shortening the consolidation period and mitigating the degradation of electroosmotic consolidation performance due to crack generation. In this study, an axisymmetric free-strain consolidation analytical model incorporating a continuous drainage top boundary was established. A semi-analytical solution was then derived utilizing Laplace-Hankel transform and boundary condition homogenization. The validity of the proposed solution was confirmed by comparing it with three cases documented in the existing literature. Additionally, a comparison with indoor model box test results demonstrated the rationality of setting the top boundary as a continuous drainage boundary. Parameter analysis revealed several key insights: firstly, under the free strain assumption, the spatiotemporal distribution of excess pore water pressure aptly captured the coupled effects of the radial electric field. Secondly, the combination of electro-osmosis and preloading technology significantly improved consolidation efficiency, with this effect becoming more pronounced as the applied voltage increased. Lastly, the general solution based on the continuous drainage boundary proved to be suitable for addressing the consolidation of soft soils enhanced by vertical drainage, applicable to real foundation consolidation problems with top boundaries exhibiting different permeabilities.

期刊论文 2024-12-28 DOI: 10.1038/s41598-024-83348-w ISSN: 2045-2322

In this study, electro-osmotic consolidation considering smear effect and free strain under cyclic loading was investigated. The analytical solution of radial consolidation of electroosmosis-vacuum-surcharge combined preloading is derived by using the Bessel function and eigenfunction methods. Subsequently, the effectiveness of the proposed method is validated through comparison with existing numerical solutions. Based on the derived solutions, the influence of the smear effect, applied voltage, vacuum pressure, and cyclic loading on soil consolidation characteristics was analyzed. The results showed that the smearing effect slows the rate of consolidation, but the final average consolidation and negative excess pore water pressure are enhanced. Compared with only cyclic loading, the combined effect of electroosmosis, vacuum, and surcharge preloading enables the soil to achieve higher strength and consolidation. When the effect of electroosmosis alone on reinforcing low-permeability soils is not significant, the combination of electroosmosis with vacuum preloading helps enhance the soil reinforcement effect.

期刊论文 2024-12-01 DOI: 10.1016/j.compgeo.2024.106810 ISSN: 0266-352X

Existing solutions for electro-osmotic consolidation assume a linear voltage distribution, which is inconsistent with the experimental findings. The present study introduces a novel two-dimensional electro-osmotic consolidation model for unsaturated soils, which considers the influence of non-linear voltage distribution. The closed-form solution is derived by employing the eigenfunction expansion method and the Laplace transform technique. The accuracy of the analytical solutions is validated through the implementation of finite element simulations. The findings from the parametric studies indicate that the excess pore water pressure (EPWP) observed in electro-osmotic consolidation is influenced by the distribution of voltage. The dissipation rate of EPWP is observed to be higher when subjected to non-linear voltage conditions compared to linear voltage conditions. Moreover, the impact of non-linear voltage distribution becomes more pronounced in unsaturated soil characterised by higher electro-osmosis conductivity and a lower ratio of kx/ky. In contrast, the excess pore air pressure (EPAP) remains unaffected by the voltage distribution.

期刊论文 2024-12-01 DOI: 10.1002/nag.3854 ISSN: 0363-9061
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共17条,2页