共检索到 605

Ensuring the accuracy of free-field inversion is crucial in determining seismic excitation for soil-structure interaction (SSI) systems. Due to the spherical and cylindrical diffusion properties of body waves and surface waves, the near-fault zone presents distinct free-field responses compared to the far-fault zone. Consequently, existing far-fault free-field inversion techniques are insufficient for providing accurate seismic excitation for SSI systems within the near-fault zone. To address this limitation, a tailored near-fault free-field inversion method based on a multi-objective optimization algorithm is proposed in this study. The proposed method establishes an inversion framework for both spherical body waves and cylindrical surface waves and then transforms the overdetermined problem in inversion process into an optimization problem. Within the multi-objective optimization model, objective functions are formulated by minimizing the three-component waveform differences between the observation point and the delayed reference point. Additionally, constraint conditions are determined based on the attenuation property of propagating seismic waves. The accuracy of the proposed method is then verified through near-fault wave motion characteristics and validated against real downhole recordings. Finally, the application of the proposed method is investigated, with emphasis on examining the impulsive property of underground motions and analyzing the seismic responses of SSI systems. The results show that the proposed method refines the theoretical framework of near-fault inversion and accurately restores the free-field characteristics, particularly the impulsive features of near-fault motions, thereby providing reliable excitation for seismic response assessments of SSI systems.

期刊论文 2025-11-01 DOI: 10.1016/j.soildyn.2025.109567 ISSN: 0267-7261

Thawing-triggered slope failures and landslides are becoming an increasing concern in cold regions due to the ongoing climate change. Predicting and understanding the behaviour of frozen soils under these changing conditions is therefore critical and has led to a growing interest in the research community. To address this challenge, we present the first mesh-free smoothed particle hydrodynamics (SPH) computational framework designed to handle the multi-phase and multi-physic coupled thermo-hydro-mechanical (THM) process in frozen soils, namely the THM-SPH computational framework. The frozen soil is considered a tri-phase mixture (i.e., soil, water and ice), whose governing equations are then established based on u-p-T formulations. A critical-state elasto-plastic Clay and Sand Model for Frozen soils (CASM-F), formulated in terms of solid-phase stress, is then introduced to describe the transition response and large deformation behaviour of frozen soils due to thawing action for the first time. Several numerical verifications and demonstrations highlight the usefulness of this advanced THM-SPH computational framework in addressing challenging problems involving thawing-induced large deformation and failures of slopes. The results indicate that our proposed single-layer, fully coupled THM-SPH model can predict the entire failure process of thawing-induced landslides, from the initiation to post-failure responses, capturing the complex interaction among multiple coupled phases. This represents a significant advancement in the numerical modelling of frozen soils and their thawing-induced failure mechanisms in cold regions.

期刊论文 2025-11-01 DOI: 10.1016/j.cma.2025.118252 ISSN: 0045-7825

Characterizing vertical profiles of in-situ particle properties is relevant because being only based on the surface or column-integrated measurements cannot unambiguously conclude the radiative impact on aerosol. Vertical profiles of in-situ aerosol properties on-board an unmanned aerial vehicle (UAV) were measured above El Arenosillo (37.1 N,-6.7 W) in the southwest of Spain during four flight missions. Measured properties included particle number size distribution, total particle concentration and multiwavelength absorption coefficient up to 3100 m during cold season (February 4, 2022 and December 11, 2023) and warm season (September 20, 2023 and April 2, 2024). The heterogeneity of particle properties has been shown around two types of events: a mineral particle event of desert origin during cold season and a new particle formation event during warm season. During cold season, a comparison between the flight missions with and without desert dust episodes shows that mineral particles decrease the planetary boundary layer (PBL) height. This behavior is probably related to absorber particles aloft atmosphere, which traps solar radiation and heat up the upper layer of the atmosphere and deteriorates the vertical dispersion. In the literature, this effect is called as 'dome effect'. During warm season, new particle formation was observed above PBL. This event could be related to the presence of precursor gases in the residual layer, and enhanced by a low concentration of pre-existing particles. The characteristic parameter during the observed event was the fine-to-total particle volume concentration ratio close to zero. These observations highlight the necessity to establish a long-term multi-temporal monitoring of vertical profiles for atmospheric parameters onboard UAV systems and to integrate in Earth observations networks. For example, radiative forcing is usually estimated from surface data, but the heterogeneity in the vertical profiles of atmospheric particles properties, which are used to the forcing quantification, is a result of inaccuracies.

期刊论文 2025-11-01 DOI: 10.1016/j.atmosres.2025.108316 ISSN: 0169-8095

Char and soot represent distinct types of elemental carbon (EC) with varying sources and physicochemical properties. However, quantitative studies in sources, atmospheric processes and light-absorbing capabilities between them remain scarce, greatly limiting the understanding of EC's climatic and environmental impacts. For in-depth analysis, concentrations, mass absorption efficiency (MAE) and stable carbon isotope were analyzed based on hourly samples collected during winter 2021 in Nanjing, China. Combining measurements, atmospheric transport model and radiative transfer model were employed to quantify the discrepancies between char-EC and soot-EC. The mass concentration ratio of char-EC to soot-EC (R-C/S) was 1.4 +/- 0.6 (mean +/- standard deviation), showing significant dependence on both source types and atmospheric processes. Case studies revealed that lower R-C/S may indicate enhanced fossil fuel contributions, and/or considerable proportions from long-range transport. Char-EC exhibited a stronger light-absorbing capability than soot-EC, as MAE(char) (7.8 +/- 6.7 m(2)g(-1)) was significantly higher than MAE(soot) (5.4 +/- 3.4 m(2)g(-1))(p < 0.001). Notably, MAE(char) was three times higher than MAE(soot) in fossil fuel emissions, while both were comparable in biomass burning emissions. Furthermore, MAE(soot) increased with aging processes, whereas MAE(char) exhibited a more complex trend due to combined effects of changes in coatings and morphology. Simulations of direct radiative forcing (DRF) for five sites indicated that neglecting the char-EC/soot-EC differentiation could cause a 10 % underestimation of EC's DRF, which further limit accurate assessments of regional air pollution and climate effects. This study underscores the necessity for separate parameterization of two types of EC for pollution mitigation and climate change evaluation.

期刊论文 2025-11-01 DOI: 10.1016/j.atmosres.2025.108275 ISSN: 0169-8095

Thawing permafrost alters climate not only through carbon emissions but also via energy-water feedback and atmospheric teleconnections. This review focuses on the Tibetan Plateau, where strong freeze-thaw cycles, intense radiation, and complex snow-vegetation interactions constitute non-carbon climate responses. We synthesize recent evidence that links freeze-thaw cycles, ground heat flux dynamics, and soil moisture hysteresis to latent heat feedback, monsoon modulation, and planetary wave anomalies. Across these pathways, both observational and simulation studies reveal consistent signals of feedback amplification and nonlinear threshold behavior. However, most Earth system models underrepresent these processes due to simplifications in freezethaw processes, snow-soil-vegetation coupling, and cross-seasonal memory effects. We conclude by identifying priority processes to better simulate multi-scale cryosphere-climate feedback, especially under continued climate warming in high-altitude regions.

期刊论文 2025-11-01 DOI: 10.1016/j.earscirev.2025.105248 ISSN: 0012-8252

Intervertebral disc degeneration (IVDD) is a globally prevalent disease, yet achieving dual repair of tissue and function presents significant challenges. Considering reactive oxygen species (ROS) is a primary cause of IVDD, and given the decrease of nucleus pulposus cells (NPCs) and extensive degradation of extracellular matrix (ECM) during IVDD development, the present study, inspired by the seeds-and-soil strategy, has developed NPCsloaded TBA@Gel&Chs hydrogel microspheres. These microspheres serve as exogenous supplements of NPCs and ECM analogs, replenishing seeds and soil for nucleus pulposus repair, and incorporating polyphenol antioxidant components to interrupt the oxidative stress-IVDD cycle, thereby constructing a microsphere system where NPCs and ECM support each other. Experiments proved that TBA@Gel&Chs exhibited significant extra-cellular ROS-scavenging antioxidant capabilities while effectively upregulating intracellular antioxidant proteins expression (Sirt3 and Sod2). This dual-action antioxidant capability effectively protects the vitality and physiological functions of NPCs. The therapeutic effects of microspheres on IVDD were also confirmed in rat models, which was found significantly restore histological structure and mechanical properties of degenerated discs. Additionally, RNA-seq results have provided evidences of antioxidant mechanism by which TBA@Gel&Chs protected NPCs from oxidative stress. Therefore, the NPCs-loaded TBA@Gel&Chs microspheres developed in this study have achieved excellent therapeutic effects, offering a paradigm using antioxidant biomaterials combined with cellular therapy for IVDD treatment.

期刊论文 2025-10-01 DOI: 10.1016/j.biomaterials.2025.123326 ISSN: 0142-9612

Mesh-free methods, such as the Smooth Particle Hydrodynamics (SPH) method, have recently been successfully developed to model the entire wetting-induced slope collapse process, such as rainfall-induced landslides, from the onset to complete failure. However, the latest SPH developments still lack an advanced unsaturated constitutive model capable of capturing complex soil behaviour responses to wetting. This limitation reduces their ability to provide detailed insights into the failure processes and to correctly capture the complex behaviours of unsaturated soils. This paper addresses this research gap by incorporating an advanced unsaturated constitutive model for clay and sand (CASM-X) into a recently proposed fully coupled seepage flow-deformation SPH framework to simulate a field-scale wetting-induced slope collapse test. The CASM-X model is based on the unified critical state constitutive model for clay and sand (CASM) and incorporates a void-dependent water retention curve and a modified suction-dependent compression index law, enabling the accurate prediction various unsaturated soil behaviours. The integration of the proposed CASM-X model in the fully coupled flow deformation SPH framework enables the successful prediction of a field-scale wetting-induced slope collapse test, providing insights into slope failure mechanisms from initiation to post-failure responses.

期刊论文 2025-10-01 DOI: 10.1016/j.compgeo.2025.107353 ISSN: 0266-352X

Soil-plant-atmosphere interaction (SPAI) plays a significant role on the safety and serviceably of geotechnical infrastructure. The mechanical and hydraulic soil behaviour varies with the soil water content and pore water pressures (PWP), which are in turn affected by vegetation and weather conditions. Focusing on the hydraulic reinforcement that extraction of water through the plant roots offers, this study couples advances in ecohydrological modelling with advances in geotechnical modelling, overcoming previous crude assumptions around the application of climatic effects on the geotechnical analysis. A methodology for incorporating realistic ecohydrological effects in the geotechnical analysis is developed and validated, and applied in the case study of a cut slope in Newbury, UK, for which field monitoring data is available, to demonstrate its successful applicability in boundary value problems. The results demonstrate the positive effect of vegetation on the infrastructure by increasing the Factor of Safety. Finally, the effect of climate change and changes in slope vegetation cover are investigated. The analysis results demonstrate that slope behaviour depends on complex interactions between the climate and the soil hydraulic properties and cannot be solely anticipated based on climate data, but suctions and changes in suction need necessarily to be considered.

期刊论文 2025-09-01 DOI: 10.1016/j.gete.2025.100697 ISSN: 2352-3808

With global warming and intensified rainfall, the heat and moisture transfer processes within frozen subgrades beneath asphalt pavements have become increasingly complex, posing risks to highway stability in cold regions. This study developed a multi-physics coupled indoor simulation system based on a typical asphalt highway structure on the Qinghai-Tibet Plateau to examine subgrade responses under solar radiation, wind, and rainfall. Results showed that rainfall shifted the dominant depth of moisture migration from 7 cm to 12 cm, with moisture at 2 cm and 7 cm increasing rapidly by 2.67 % and 1.58 %, respectively. A nonlinear decrease-increase pattern was observed at 12 cm due to the capillary barrier effect. Evaporative latent heat significantly suppressed surface warming, reducing the temperature rise at 2 cm by 59.2 %, and delayed heat transfer to deeper layers (reductions of 54.5 %-64.7 %). A cumulative heat flux prediction model, incorporating solar radiation, evaporation, convection, and surface wetting, showed high accuracy (R-2 = 0.981 and 0.952; relative errors: 4.1 % and 9.6 %). Sensitivity analysis identified the surface wetting rate coefficient (beta) and evaporation attenuation coefficient (gamma) as dominant factors (F > 6.0). These findings improve understanding of rainfall-induced thermal effects and offer guidance for climate-resilient road infrastructure in permafrost regions.

期刊论文 2025-09-01 DOI: 10.1016/j.csite.2025.106741 ISSN: 2214-157X

Use of forest biomass may induce changes in the aerosol emissions, with subsequent impacts on the direct and indirect climate effects of these short-lived climate forcers. We studied how alternative wood use scenarios affected the aerosol emissions and consequent radiative forcing in Finland. In all alternative scenarios, the harvest level of forest biomass was increased by 10 million m3 compared to the baseline. The increased biomass harvest was assigned to four different uses: (i) to sawn wood, (ii) to pulp-based products, (iii) to energy biomass combusted in small-scale appliances or (iv) to energy biomass combusted in medium-to-large scale boilers. Aerosol emissions (black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2)) under these scenarios were estimated using displacement factors (DFs). The global aerosol-climate model ECHAM-HAMMOZ was used to study instantaneous radiative forcing due to aerosol-radiation interactions (IRFARI) and effective radiative forcing (ERF), based on the differences in aerosol emissions between the alternative wood use scenarios and the baseline scenario. The results indicated that the use of sawn wood and energy biomass combusted in medium- to large-scale boilers decreased radiative forcings, implying climate cooling, whereas the increased use of pulpwood increased them. Energy biomass combustion in small-scale appliances increased IRFARI by 0.004 W m-2 but decreased ERF by -0.260 W m-2, specifically due to a strong increase in carbonaceous aerosols. Alternative use of forest biomass notably influenced aerosol emissions and their climate impacts, and it can be concluded that increased forest biomass use requires a comprehensive assessment of aerosol emissions alongside greenhouse gases (GHGs). Given the consequent reduction in radiative forcing from aerosol emissions, we conclude that the greatest overall climate benefits could be achieved by prioritising the production of long-lived wood-based products.

期刊论文 2025-08-21 DOI: 10.1111/gcbb.70041 ISSN: 1757-1693
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共605条,61页